Как соединить брус между собой по длине: Как крепить брус между собой: все способы соединения

Сращивание бруса по длине

Автор: Алексей Алексеев

0

Отправить на почту

Если речь идет о стройке небольшого домика из бруса, вопрос сращивания бруса не актуален. Такой прием применяют, если речь идет о длине стены свыше 6 метров. Дело в том, что некоторые элементы при строительстве дома из этого материала просто невозможно собрать из цельного бруса. В таких случаях прибегают к технологии строительства, именуемой сращиванием бруса (или бревна) по длине (или в углах).

  • Когда применяют сращивание бруса по длине
  • Как состыковать брусья
  • Типы соединений бруса при сращивании по длине

Сращивание бруса – это, грубо говоря, состыковка двух коротких брусьев или бревен в одно длинное. Это неплохое решение, позволяющее существенно сэкономить стройматериал и сократить смету. Сама процедура довольно проста, но для успешного результата необходимо знать ряд нюансов. В любом случае, прежде чем приступать к строительным работам, разузнать об этой технологии соединения не будет лишним. Тем более, иметь с этим дело придется не только при возведении собственно коробки коттеджа, но и всех внутренних перегородок.

Когда применяют сращивание бруса по длине

Собственно, технология применяется не только в строительстве брусового коттеджа, но и бревенчатого строения или обычного «каркасника».

Срастить можно:

  • профилированный брус;
  • клееный брус;
  • оцилиндрованное бревно.

Отметим, что размеры пилматериала не могут быть стандартными. То есть, изделия из дерева могут быть лишь нескольких параметров (около 4 величин по ширине и высоте). И далеко не все пригодны для постройки, например, несущих конструкций коттеджа. Вот, к примеру, брус с сечением 5 на 5 сантиметров (срощенный) годится только для сооружения обрешетки или в качестве стропил нетяжелой крыши. Как вариант, состыковать бруски можно внахлест по ребру, однако случаи, когда это возможно, скорее исключение.

Есть нюансы и здесь. При наличии уже готовых креплений в сайдинге, обрешетку возможно будет монтировать только в одну направляющую.

Как уже отмечали, единого стандарта для размеров бруса не существует. Он может быть разной ширины и высоты. Остается только длина бруса. Его обычно делают трехметровым и шестиметровым. Последний пользуется наибольшим спросом, так как с ним удобно работать. Так вот, если по плану строение будет больше по площади, чем 6 на 6 метров – применяют сращивание бруса по длине.

Как состыковать брусья

Мы уже отмечали, что процедура сращивания брусьев довольно проста. Так что, с этим справится даже доморощенный мастер, умеющий держать инструменты в руках. При необходимости состыковать брусья по длине, можно воспользоваться одним из описанных ниже методов.

Важно: прежде всего, отметим, что при возведении стен, срощенный брус нужно класть по тому же принципу, что и кирпич. То есть, избегать совпадения стыков в одном месте. Стыки должны чередоваться с перевязками.

С чего начать? С правового ликбеза! Берем соответствующий строительный ГОСТ (30974-2002) и читаем все, что необходимо знать о правильной технологии сращивания бруса по длине. В документе подробно расписано всю техническую сторону вопроса. Причем конкретно для строительства малоэтажных деревянных конструкций. Если конкретней, то там можно прочесть о том, как осуществлять состыковку в углах или какими должны быть т-образные стыки. Впрочем, придерживаться всех требований по ГОСТу при строительстве коттеджа вовсе не принципиально.

Сращивание бруса по длине бывает нескольких типов. Какой именно применить определяют в зависимости от предполагаемой нагрузки на место стыка двух кусков:

  1. Если планируется так называемая нагрузка на растяжение, то брусья между собой сращиваются в замок.
  2. При нагрузке на сжатие оптимальным будет метод состыковки, при котором площадь соприкосновения торцов сопрягаемых брусков будет максимальной.
  3. Сращивание под углом актуально, если планируется нагрузка на изгиб древесины.

Типы соединений бруса при сращивании по длине

Итак, в зависимости от предполагаемой нагрузки и еще ряда факторов, сопрягать брусья (бревна) по длине можно таким образом:

«В полдерева». Здесь все предельно просто и зависит от мастерства плотника и точных замеров. В двух сопрягаемых брусьях осуществляют выборку материала на половину толщины каждого. Если есть необходимость, место стыка для надежности фиксируют шурупами.
Со шпоном. Принцип тот же – выборка древесины в половину толщины бруса. Только в качестве крепежей используют деревянный шпон. Он должен быть чуть больше по диаметру, чем отверстие для него в другой половине сращиваемого бруса. Глубина отверстия не должна превышать двух сантиметров.
Коренной шип. Отметим сразу – это самый сложный и трудоемкий способ соединения брусьев между собой. Его выпиливают в торце одного из сопрягаемы брусьев. Вставляется он в паз точно такого же размера на втором бруске. В этом деле нужна аптечная точность.
Косой замок. Бруски в местах стыка спиливаются под углом.
По принципу замка. Еще один сложный вариант. В местах стыка бревен (брусков) выпиливают выемки, которые будут соединяться, накладываясь друг на друга.

Инструменты, которые понадобятся в работе:

  • Ножовка
  • Лобзик
  • Фрезерный станок
  • Долото
  • Мерная рулетка
  • Молоток
  • Глазомер (если необходимо проводить точные замеры)
  • Ножовка
  • Уголок

Ну и, понятное дело, сделать заготовки, которые помогут более точно запилить торцы бруса для соединений.

Виды и способы соединения клееного бруса

Другие статьи по теме:

  • Базовая информация по строительству домов из клееного бруса
  • Клееный брус. Особенности материала для строительства
  • Видео о строительстве домов из клееного бруса

 


 

Содержание 

 

1.Способы соединения стен​

2.Продольное соединение

3.Способы углового соединения брус

   3.1. Соединение углов бруса с остатком «в чашу»

   3.2. Соединения бруса без остатка «в лапу»

4.Способ соединения бруса «Т-образное»

 

 

1. Способы соединения стен 

 

При строительстве сруба из бруса важным этапом является соединение двух звеньев между собой.

Соединение требуется в следующих случаях:

  • Рубка угла;
  • Наращивание по длине в случае, если стандартные размеры недостаточны.

 

Формируя деревянную стену, нужно точно знать, как собрать клееный брус в местах соединения и примыкания.

Есть стыковки вертикальные и горизонтальные. Сращивание бруса не сильно отличается от  сращивания бревна, но имеет свои тонкости.

 

Классификация типов угловых соединений при рубке срубов из бруса такая же, как для срубов из бревна. Сруб из бруса может быть с остатком («в чашу») и без остатка («в лапу»), замки имеют те же названия: «в охряп», « в курдюк», «в полдерева».

Единственное название, которое не может быть использовано – «в обло»: брус имеет прямоугольную форму и сделать в нем округлую (облую) врубку не представляется возможным.

Существуют способы угловых врубок, присущие только этому виду строительного материала – «на шипах» (коренных или вставных).

 

 

Всего существует 4 основных способа соединения:

  1. Продольное.
  2. Соединение с остатками;
  3. Соединение без остатка;
    1. Т-образное;

        

                                                                                                                                                                                                                                                                                                                                                                                                            Соединение с остатком                                                                      Соединение без остатка                                                              

 

2.

Продольное соединение

 

Такие варианты характерны, если стена дома имеет нестандартную длину
Максимальная длина клееного бруса может достигать 18 метров. Но всё равно, возможна ситуация, при которой отдельные брусья нужно будет соединить между собой по длине.

 

Существует несколько типов состыковок  по длине:

  • соединение в полдерева. срезается у обеих частей бруса половина толщины под прямым углом. дополнительно можно укреплять соединение шурупами.
  • соединение со шпонкой. само соединение можно делать в полдерева, но предварительно изготавливаются шпонки, и просверливаются отверстия чуть меньшего диаметра. глубину врезки шпонок в брусья следует принимать не менее 2 см и не более 1/5 высоты.
  • соединение с коренным шипом. достаточно трудоёмкое соединение, которое требует большой точности и серьезных навыков в столярном деле.
  • соединение на косой замок. наиболее подходящее соединение, когда речь идет о нагрузке по типу изгиба. при этом такое соединение достаточно просто изготовить.
  • соединение на накладной замок. довольно сложное по исполнению соединение, которое требует перепада в плоскости соединения, чтобы получился замок. при этом выполняется выпиливание замка в обеих частях древесины

 

Для получения деталей больших габаритов необходимо воспользоваться одним из следующих методов соединения:

  • продольное соединение с использованием шпонки и шипа;
  • косой замок;
  • продольное соединение бруса между собой коренной шип;
  • соединение встык;
  • соединение в полдерева.

 

 

                                                                      Тип продольного соединения «в полдерева»

 

                             Общий вид соединения.                                                                                   Элементы соединения.

                                                 

 

Данный тип соединения деревянных элементов при возведении построек из бруса предполагает выпиливание угла в брусе до середины его поперечного сечения.

В одной детали должен получиться выпи углом вниз, а во второй, соответственно, углом вверх.

После подготовительных процедур следует уложить деревянные элементы друг на друга. Самым главным недостатком данного типа соединения является то, что в местах сращивания деревянный брус значительно теряет в толщине, а значит, падают его эксплуатационные показатели.

Этод метод является самым простым. После сращивания бруса, следует дополнительно скрепить его деревянными нагелями.

 

Тип продольного соединения «на косой замок»

 

Общий вид соединения.                                                                                    Элементы соединения.
                        

     

 

Данный метод сращивания специалисты называют самым сложным, однако данная конструкция очень надежна.

С торцов деревянной детали необходимо выпилить косые элементы. При этом должен быть соблюден определенный угол, повторены необходимые изгибы, а габариты должны полностью соответствовать.

В итоге должен получиться некоторого рода шип и паз, которые в конечном итоге и образуют косой замок. После этого два бруса необходимо соединить, приложив обработанные места друг другу.

Для достижения максимальной надежности и прочности соединения используют специальные деревянные нагели.

 

 

Соединения встык производится:

  • коренным шипом;
  • шпонками.

 

 

Тип продольного соединения с коренным шипом

 

             Общий вид соединения.                                                                                            Элементы соединения. 

          
 

Узел состоит из выпиленных шипа на одном торце бруса, и паза на другом. Соединить коренной шип просто. При монтаже в пропил укладывается утеплитель из джута или войлока. Выпиливая элементы нужно быть точным, так как соединение коренной шип должно быть плотным, герметичным. Только так можно избежать большие потери тепла.

 

Тип продольного соединения на шпонках

 

Общий вид соединения.                                                                                            Элементы соединения. 
 

                         

 

 

Принцип соединения бруса:

в двух элементах нужно сделать абсолютно одинаковые пазы. После этого обработанные детали укладывают рядом друг с другом так, чтобы пазы соприкасались и вбивают в этот паз шпонку.

Шпонка представляет собой вставной элемент, своего рода клин, который изготавливается из твердых пород дерева. Для деревянного бруса следует использовать деталь из осины. После попадания в подготовленные пазы этот элемент надежно скрепляет два бруса друг с другом.

Шпонки могут отличаться собой геометрической формой и быть:

  • прямыми;
  • прямоугольными;
  • с зазубринами;
  • призматическими;
  • в форме «ласточкин хвост».

 

В полдерева – применяется для соединения бруса при строительстве нежилых зданий технического назначения. Брусья крепятся с вырезкой пазов, которые в дальнейшем скрепляются с помощью стальных гвоздей под углом 45 градусов;
С коренным шипом – считается наиболее надежным способом закрепить два материала по горизонтали. Для этого один торец бруса подвергается вырезанию специального паза, а на втором формируется специальный шип. Две готовых части соединяются образуя цельный брус;
С продольным шипом на шпонке – обеспечивает надежное соединение бруса по всей его длине. Технология полностью аналогична угловой установке пиломатериала. Два торца подвергаются вырезанию паза под специальный шип;
С косым замком – наиболее надежное и сложное соединение, которое требует обработки двух частей бруса. На одной части бруса нарезаются специальные шипы и зацепы, а на второй пазы для их крепления. Таким образом соединенные детали образуют крепкий замок.

 

 

3. Способы углового соединения бруса

 

В зависимости от проектного решения наружных стен из бруса угловые соединения делают двух типов:

  • Вариант «с остатком» предполагает выпуски брусьев наружу
  • Вариант «без остатка» подразумевает углы без выноса стен за пределы периметра дома.

 

            С остатком  «в чашу»                                                                              Без остатка  «в лапу»

                                                                                                                

 

«В чашу», согласно которой углы вырубаются с остатком.  Это самый распространенный способ, имеющий массу вариаций отечественного и зарубежного происхождения. Минус узловых чаш в ощутимом расходе вовсе не дешевого материала, плюс в отличной теплоизоляции угла. Выглядят рубленные в чашу строения весьма эффектно.

 

«В лапу» или по-простому «без остатка». Согласно нему контур строения выстраивается четко по плану. При равнозначном с предыдущей технологией расходе материала внутренние габариты строения получаются больше. Рубленные в лапу углы требуют обязательной облицовки, иначе они будут продуваться и мокнуть.  

 

 «Без остатка» крепеж отличается ровными краями встык, «с остатком» — брусовые концы на определенном расстоянии выходят за стеновую плоскость под углом 90°.

Это отражается на общей материалоемкости конструкции, поскольку расход брусьев на 50 см увеличивается в сравнении с рубкой встык. Но углы дома из бруса «с остатком» из выступающих фрагментов бревен сильнее защищены от негативного климатического воздействия. Помимо этого, такая технология делает стены устойчивыми.

 

 

 

3.1. Соединение углов бруса с остатком «в чашу»

 

В чашу брусья соединяются за cчет замочных пазов, которые могут быть нескольких видов:

  • Однострочными
  • Двусторонними
  • Четырехсторонними.

 

Крепеж односторонним пазом имеет в бруске неглубокий разрез в форме поперечной бороздки. Как правило, таким образом соединяют профилированный брус. 

При осуществлении крепления с двухсторонним пазом разрезы формируют с обеих сторон, верхней и нижней, с глубиной 1/4 толщины бруса.  

При выполнении четырехстороннего паза разрезы выполняют с 4-х сторон. Наличие поперечных канавок существенно упрощает процесс установки венцов – бревна уплотненно налегают друг на друга, устойчивость такого способа соединения бруса в углах существенно увеличивается.

 

Тип соединения профилированного бруса в односторонний замочный паз 

 

Общий вид соединения в односторонний замочный паз                                                     Элемент соединения.

 

    

 

При таком виде соединения в каждом брусе делается перпендикулярный паз в виде надпила с одной стороны — обычно верхней. Надпил должен подходить по ширине с перпендикулярным сечение бруса.

 

 

Тип соединения в двухсторонний замочный паз 

 

Общий вид соединения в двухсторонний замочный паз                                                              Элемент соединения

                                                                                

 

Технология двухстороннего пазового замка подразумевает под собой пропилы с двух сторон бруса т. е. сверху и снизу. Глубина перпендикулярного пропила примерно равна 1/4 от высоты бруса. Качественное соединение, но требует большого опыта от плотников, дабы не допустить трещины или сколы при пропиле паза и установке бруса.

 

 

Тип соединения профилированного бруса в четырехсторонний замочный паз 

 

Общий вид соединения бруса в четырехсторонний замочный паз                                  Элемент соединения бруса.

                                          

 

Тип соединения профилированного бруса в четырехсторонний замочный паз (в «обло») 

 

                          Общий вид соединения бруса в четырехсторонний замочный паз (в «обло»)                 Элемент соединения бруса. 
 

                                                        

 

 

При выполнение четырехстороннего замкового паза выпиливают паз со всех сторон профилированного бруса. Такой вариант крепления позволят достичь большой прочности сруба. Пропилы со всех сторон упрощают возведение сруба — венцы ложатся как конструктор. Соединение углов таким способом очень увеличивает надежность. 

 

 

Чашечный — является наиболее простым видом углового обустройства.

Угловой крепеж  этим методом выполняется в таких вариациях:

•    в половину дерева;
•    в охряп;
•    в курдюк.

 

 

«В полдерева»

Данный способ стыковки (наиболее простой) подразумевает вырубку прямоугольного паза глубиной в половину толщины бруса – отсюда и название.

С целью увеличения необходимой плотности укладки вверху бруса помимо чаши формируют дополнительную продольную канавку. После укладки и закрепления поперечного бруса устанавливают бревна очередного венца. Перед укладыванием каждого яруса продольный паз заделывают утеплителем. Для прочности конструкции каждое новое бревно крепится к предыдущему за счет нагелей, что усиливает вертикальную устойчивость поверхности.

 

«В курдюк»

Прочную и надежную стыковку брусьев обеспечивает дополнительный шип. Внизу чаши вырезают еще один выступ вдоль бруска и поперек чашечного дна. А внизу, поперек паза формируют особую выемку, на которую при установке насаживается курдюк.

Для качественного исполнения соединения такого типа требуются плотники, обладающие высоким уровнем мастерства.

 «В охряп»

Соединение, в котором главная задача – правильно рассчитать ширину перемычки. При работе с брусом, за счет его стандартной геометрии, выполнить вырубку можно с использованием шаблона (в отличие от работы с бревном). Безошибочное выпиливание способствует значительному ускорению работы.

 

Охряп – промежуточный вид соединения бруса в углах между классическими способами с остатком и без. Отличие рубки «в охряп» в том, что снизу и сверху балки вырезаются чаши на 1/4 диаметра.

 

3.2. Соединения бруса без остатка «в лапу»

 

Традиционно для бань и домов используются  «в полдерева» и «в лапу».

 

 

Отличаются они только формой. В полдерева имеет ровные, параллельные грани. При стыковке бруса «в лапу» форму шипов делают трапециевидной. Она чуть сложнее в исполнении, но меньше шансов возникновения сквозных отверстий.

 

Существуют следующие варианты соединения бруса «в лапу»:

1. Коренные шипы;
2. Встык;
3. Шпонки;

Самым простым вариантом является соединение бруса методом встык. Торцы брусьев при этом ровно обрезают и фиксируют их на углах при помощи стальных скоб или пластин с шипами.

Однако, данный метод стыкования бруса нельзя назвать очень прочным и герметичным. Поэтому его лучше использовать для нежилых хозяйственных построек.

 

Для защиты углов сруба от продувания и придания дополнительной механический прочности конструкции сруба используют шпонки — прямоугольные и в ласточкин хвост либо используют врубку на коренной шип прямой или полусковороднем.

Шпонки – вертикальные стержни из твердой древесины (дуб, береза, граб).

 

    Тип соединения на прямоугольных шпонках

 

Общий вид соединения                                                                                                                        Элементы соединения

                                                          

  

 

При использовании данного способа на брусьях вырезаются специальные прорези и отверстия, в которые в дальнейшем вставляется шпонка определенного размера.

Брусья укладываются торец к торцу и соединяются шпонками. Размер прорези должен быть с учетом углубления вглубь пиломатериала на 8-15 сантиметров, в зависимости от размера бруса

 

Тип углового соединения сруба на шпонках «ласточкин хвост»

 

   Общий вид соединения                                                                                                           Элементы соединения.
 

                                                             

 

 

Вариант подразумевает сцепление двух брёвен зубьями особой формы. Брусья под прямым углом направляются друг к другу: один имеет шипы, а другой – пазы. Такой «замок» обеспечивает надёжное крепление без наличия щелей и дарит срубу устойчивость.

От коренного шипа он отличается трапециевидной формой, которая делает зону контакта брусьев более плотной и жесткой. 

 

Тип углового соединения в срубе с коренным шипом

 

                       Общий вид соединения                                                                                                           Элементы соединения

                                                                                          

 

Оптимальным вариантом стыкования является способ «в теплый угол», также называемый соединением «в коренной шип». На торце бруса при этом вырезается внутренний выступ-шип, который защищает шов от продувания и повышает прочность угла.

 

 

4. Способ соединения бруса «Т-образное»

 

«Т-образное» — соединение часто применяется в тех случаях, когда требуется сооружение внутренних или наружных перегородок. Изготовление Т-образного торца занимает меньше времени, чем вырезание специальных пазов в бревнах.

Всего существует 4 вида Т-образных соединений:

  • Замочного паза на вставном шипе
  • Симметричного трапециевидного шипа — сковородня
  • Прямоугольного трапециевидного шипа — полусковордня
  • Прямого паза на коренном шипе.

 

Все эти типы соединения выполняются в одной последовательности. С торца бруса, из которого будет строиться перегородка, вырезается шип в том виде, который соответствует выбранному вами типу стыка. А в стенке делается паз соответствующей формы и размеров. Далее, брус для перегородки просто вставляется в паз и фиксируется.

 

 

 

 

 

По видам конструктивных решений угловые соединения подразделяют на:

  • соединения с остатком;
  • соединения без остатка;
  • соединения встык;
  • Т-образные соединения стен и простенков.

 

По типам конструкций угловые соединения подразделяют на предназначенные:

  • для бревенчатых стен с соединением с остатком:

— соединение в «чашку» 
— соединение в «обло» 

  • для бревенчатых и брусчатых стен с соединением без остатка:

— соединение в «лапу» 

  • для брусчатых стен с соединением «встык»:

— соединение угла на шпонках 
— соединение угла с коренным шипом 

 

  • для брусчатых стен с соединением с остатком:

— соединение в «обло» (с замочным пазом) 

  • для Т- образных соединений стен и простенков:

— соединение в «обло» (с замочным пазом) 
— соединение в «чашку» 
— соединение cимметричным трапециевидным шипом 
— соединение прямоугольным трапециевидным шипом 
— соединение прямым пазом 

поддержка и типы подключения

поддержка и типы подключения

Типы опор и соединений


Структурные системы передают свою нагрузку через ряд элементов
на землю. Это достигается путем проектирования соединения элементов.
на их пересечениях. Каждое соединение разработано таким образом, что оно может передавать,
или поддержка, определенный тип нагрузки или условия нагрузки. Для того, чтобы быть
способный анализировать структуру, прежде всего необходимо иметь четкое представление о
силы, которым можно сопротивляться и которые можно передать на каждом уровне поддержки на протяжении всей
структура. Фактическое поведение поддержки или соединения может быть довольно
сложный. Настолько, что если учесть все различные условия,
проектирование каждой опоры было бы ужасно длительным процессом. И все еще,
условия на каждой из опор сильно влияют на поведение
элементы, из которых состоит каждая структурная система.

Системы из конструкционной стали имеют сварные или болтовые соединения. сборный
железобетонные системы могут быть механически связаны разными способами,
в то время как монолитные системы обычно имеют монолитные соединения. Древесина
системы соединяются гвоздями, болтами, клеем или специальными соединителями.
Независимо от материала, соединение должно быть спроектировано таким образом, чтобы
жесткость. Жесткие, жесткие или неподвижные соединения лежат на одном крайнем пределе
этот спектр и шарнирные или штифтовые соединения связывают друг с другом. Жесткий
соединение поддерживает относительный угол между соединенными элементами, в то время как
шарнирное соединение допускает относительное вращение. Есть и связи
в стальных и железобетонных конструктивных системах, в которых частичная жесткость
является желаемой конструктивной особенностью.

ТИПЫ ОПОР
Три общих типа соединений, которые соединяют встроенную конструкцию с ее
фундамент; ролик , штифт и фиксированный . Четвертый
тип, редко встречающийся в строительных конструкциях, известен как простой
поддерживать. Это часто идеализируется как поверхность без трения). Все из этого
опоры могут располагаться в любом месте вдоль конструктивного элемента. Они найдены
на концах, в середине или в любых других промежуточных точках. Тип
соединения опор определяет тип нагрузки, которую может выдержать опора.
Тип опоры также оказывает большое влияние на несущую способность конструкции.
каждого элемента, а значит и системы.

На схеме показаны различные способы использования каждого типа поддержки.
представлен. Единый унифицированный графический метод для представления каждого из этих
типов поддержки не существует. Скорее всего, одно из этих представлений
будет похоже на местную обычную практику. Однако каким бы ни было представление,
силы, которым может противостоять тип, действительно стандартизированы.

РЕАКЦИИ
Обычно необходимо идеализировать поведение опоры, чтобы
для облегчения анализа. Принят подход, аналогичный безмассовому,
Шкив без трения в домашней задаче по физике. Несмотря на то, что эти шкивы
не существуют, они полезны для изучения определенных вопросов. Таким образом,
трением и массой часто пренебрегают при рассмотрении поведения
связи или поддержки. Важно понимать, что все графические
представления о подставках — это идеализации реальной физической связи.
Следует приложить усилия, чтобы найти и сравнить реальность с реальностью.
и/или числовая модель. Часто очень легко забыть, что предполагаемая идеализация может быть совершенно иной.
чем реальность!

Диаграмма справа показывает силы и/или моменты, которые
«доступен» или активен для каждого типа поддержки. Это ожидаемо
что эти репрезентативные силы и моменты, если их правильно рассчитать, будут
привести к равновесию в каждом структурном элементе.


ОПОРНЫЕ РОЛИКИ
Роликовые опоры могут свободно вращаться и перемещаться вдоль поверхности при
на котором лежит ролик. Поверхность может быть горизонтальной, вертикальной или наклонной
под любым углом. Результирующая сила реакции всегда является единственной силой, которая
перпендикулярно поверхности и удалено от нее. Роликовые опоры обычно
расположен на одном конце длинных мостов. Это позволяет конструкции моста
расширяться и сжиматься при изменении температуры. Силы расширения могут
ломать опоры у берегов, если конструкция моста была «заперта»
на месте. Роликовые опоры также могут иметь форму резиновых подшипников, коромысла,
или набор шестерен, которые предназначены для обеспечения ограниченного количества боковых
движение.

Роликовая опора не может противостоять боковым силам. Представлять себе
конструкция (возможно, человек) на роликовых коньках. Остался бы на месте
до тех пор, пока структура должна поддерживать только себя и, возможно, совершенно
вертикальная нагрузка. Как только боковая нагрузка любого рода давит на конструкцию
он откатится в ответ на силу. Боковая нагрузка может быть толчком,
порыв ветра или землетрясение. Поскольку большинство конструкций подвергается
боковых нагрузок следует, что здание должно иметь другие виды опор
в дополнение к роликовым опорам.


ОПОРЫ НА ШТИФТАХ
Опоры на штифтах могут противостоять как вертикальным, так и горизонтальным силам, но не
момент. Они позволят элементу конструкции вращаться, но не переводить
в любом направлении. Предполагается, что многие соединения являются закрепленными соединениями.
даже если они могут немного сопротивляться моменту в реальности. Это
также верно, что штифтовое соединение может допускать вращение только в одном направлении;
обеспечение сопротивления вращению в любом другом направлении. Колено может быть
идеализирован как соединение, допускающее вращение только в одном направлении и
обеспечивает сопротивление боковому движению. Конструкция штифтового соединения
хороший пример идеализации действительности. Одно закрепленное соединение
обычно недостаточно, чтобы сделать конструкцию устойчивой. Другая поддержка должна
быть предусмотрен в какой-то момент, чтобы предотвратить вращение конструкции. Представительство
шарнирной опоры включают в себя как горизонтальные, так и вертикальные силы.


ШТЫРЬЕВЫЕ СОЕДИНЕНИЯ
В отличие от роликовых опор конструктор часто может использовать штифтовые соединения
в структурной системе. Это типичная связь, обнаруженная почти в
все фермы. Они могут быть артикулированы или скрыты от глаз; они могут быть очень
выразительный или тонкий.

Есть иллюстрация одного из элементов Олимпийского стадиона.
в Мюнхене ниже. Это соединитель из литой стали, который действует как узел для решения
ряд растягивающих усилий. При ближайшем рассмотрении можно заметить, что
соединение выполнено из нескольких частей. Каждый кабель подключается к
узел концевой «скобой», которая соединена с большим штифтом.
Это буквально «закрепленное соединение». Из-за природы
геометрии кронштейна и штифта, определенное количество вращательных движений
будет разрешено вокруг оси каждого штифта.

Далее следует одно из соединений пирамиды Луавра И.М. Пейя
ниже. Обратите внимание, как он также использовал закрепленные соединения.

Закрепленные соединения встречаются ежедневно. Каждый раз, когда распашная дверь
открытое штифтовое соединение позволяет вращаться вокруг определенной оси;
и помешал переводу на два. Дверная петля предотвращает вертикальное и горизонтальное
перевод. На самом деле, если достаточный момент не создается
для создания вращения дверь вообще не будет двигаться.

Вы когда-нибудь рассчитывали, сколько времени требуется, чтобы открыть конкретный
дверь? Почему одну дверь легче открыть, чем другую?


ФИКСИРОВАННЫЕ ОПОРЫ
Неподвижные опоры могут выдерживать вертикальные и горизонтальные силы, а также момент.
Поскольку они ограничивают как вращение, так и перемещение, они также известны как
жесткие опоры. Это означает, что конструкции требуется только одна фиксированная опора.
чтобы быть стабильным. Все три уравнения равновесия могут быть удовлетворены.
Флагшток, установленный на бетонном основании, является хорошим примером такой поддержки.
Представление неподвижных опор всегда включает две силы (горизонтальную
и вертикально) и момент.

ФИКСИРОВАННЫЕ СОЕДИНЕНИЯ
Фиксированные соединения очень распространены. Стальные конструкции многих размеров состоят
элементов, сваренных между собой. Монолитная бетонная конструкция
автоматически становится монолитным и становится серией жестких соединений
при правильном размещении арматуры. Спрос на фиксированные соединения
большее внимание во время строительства и часто являются источником строительных
неудачи.

Пусть этот маленький стул проиллюстрирует, как два типа «фиксированных»
соединения могут быть созданы. Один сварной, а другой состоит из
два винта. Оба считаются фиксированными соединениями из-за того, что
что оба они могут противостоять вертикальным и боковым нагрузкам, а также развивать
сопротивление моменту. Таким образом, было обнаружено, что не все фиксированные соединения
должны быть сварными или монолитными. Пусть петли в точках A и
B рассмотреть более подробно.


ПРОСТЫЕ ОПОРЫ

Некоторые идеализируют простые опоры как поверхностные опоры без трения.
Это правильно, поскольку результирующая реакция всегда является единственной.
сила, направленная перпендикулярно поверхности и направленная от нее. Тем не менее,
в этом тоже похожи на роликовые опоры. Они отличаются тем, что простой
опора не может выдерживать боковые нагрузки любой величины. Созданная реальность
часто зависит от гравитации и трения, чтобы создать минимальное количество трения
устойчивость к умеренным боковым нагрузкам. Например, если положить доску
через зазор, чтобы обеспечить перемычку, предполагается, что планка останется
на своем месте. Он будет делать это до тех пор, пока ногой не ударит его или не сдвинет. В тот момент
доска сдвинется, потому что простое соединение не может создать никакого сопротивления
к латеральному лолу. Простая поддержка может быть найдена как тип поддержки
для длинных мостов или пролетов крыш. Простые опоры часто встречаются в зонах
частой сейсмической активности.


ПОСЛЕДСТВИЯ
Следующие видеоролики иллюстрируют значение типа поддержки
условие поведения при изгибе и местонахождения максимального изгиба
напряжения балки, опирающейся на ее концы.

Простые балки с петлями слева и роликами справа.

Простые балки, которые шарнирно закреплены слева и закреплены на
верно.

Простые балки, закрепленные с обоих концов.


Вопросы к размышлению

хммм…..

 

Проблемы с домашним заданием

 

Дополнительные показания

уточняется


Copyright © 1995 Крис Х. Любкеман и Дональд
Peting
Copyright © 1996, 1997, 1998 Крис Х. Любкеман

Механика материалов: изгиб – напряжение сдвига » Механика гибких конструкций


исследования

человек

курсы

блог


Поперечный сдвиг при изгибе

Как мы узнали при создании диаграмм сдвига и момента, существует поперечная сила и изгибающий момент , действующие по длине балки, испытывающей поперечную нагрузку. На предыдущем уроке мы узнали о том, как изгибающий момент вызывает нормальное напряжение . Это нормальное напряжение часто доминирует в расчетных критериях прочности балки, но по мере того, как балки становятся короткими и толстыми, поперечное напряжение сдвига 90 1350136 становится доминирующим. В этом уроке мы узнаем, как сила сдвига при изгибе балки вызывает напряжение сдвига .

Поперечный сдвиг бывает трудно визуализировать. Рассмотрим несколько балок, консольно прикрепленных к стене. Представьте, что это деревянные доски размером 2 на 4 дюйма. Если они не связаны вместе, приложение нагрузки к свободному концу балок приведет к их изгибу и скольжению относительно друг друга, как показано на рисунке ниже. Если вместо этого доски склеить, клей предотвратит скольжение балок друг относительно друга. Это сопротивление скольжению или сопротивление силам, параллельным поверхности балки, создает напряжение сдвига внутри материала. Это напряжение сдвига может привести к разрушению, если горизонтальные плоскости, которые должны сопротивляться сдвигу, будут слабыми.

Чтобы понять природу этого поперечного напряжения сдвига более математически, давайте представим балку, которая просто поддерживается на концах и нагружена точечной силой в ее центре. Давайте увеличим масштаб небольшого сегмента балки и проанализируем силы, действующие на него. Мы знаем из наших предыдущих разделов, что будет нормальное напряжение от изгиба, которое изменяется вдоль оси y . Из показанной нагрузки мы знаем, что нормальное напряжение в направлении x  будет сжимающим (отрицательным) в верхней части балки и растягивающим (положительным) в нижней части балки. Мы также знаем, что это нормальное напряжение будет равно нулю вдоль нейтральной оси балки. Нас интересует суммирование сил в x  и приравнять их к нулю. Если мы посмотрим на произвольную площадь поперечного сечения (т. Е. Не на всю площадь поперечного сечения), мы можем записать силы от нормального напряжения как напряжение, умноженное на площадь дифференциального элемента. Итак, из приведенной выше аналогии с деревянной доской мы знаем, что должна существовать сила, параллельная основанию этой произвольной области — эта сила сдвига будет действовать в направлении 90 157 x 90 158 , и мы назовем ее дельта H. Теперь мы можем просуммировать силы, действующие в x направление.

Установив сумму сил в направлении x равной нулю и решив наш неизвестный сдвиг, мы можем начать с простых вещей. Во-первых, мы видим, что, переставляя некоторые члены и вытягивая из интеграла члены, которые не меняются по площади поперечного сечения, мы получаем знакомый член в крайней правой части уравнения. Находим интеграл от y по площади – он, как мы знаем из нашего урока по изгибу, равен первому моменту площади относительно другой оси (в данном случае из иллюстрации поперечного сечения, т.е. z оси):  Q z . Мы также можем немного упростить это уравнение, вспомнив взаимосвязь между изменением изгибающего момента и поперечной силой. Итак, мы можем переписать M d -M c (что является дельтой M ) как V дельта x . После того, как мы приведем два дельта-члена к одной стороне уравнения, у нас останется уравнение для горизонтальной поперечной силы на единицу длины .

(Вы можете заметить, что я избавился от нижних индексов, которые показаны в приведенном выше уравнении. Это потому, что в приведенном выше уравнении была указана система координат: x были длинной осью луча, y были вдоль толщина, а по ширине z . Приведенное выше уравнение является общим, вам решать, каковы координаты и, следовательно, какие индексы и соответствующие моменты площади вам нужно найти.)

Это уравнение для q имеет единицы измерения [Н·м -1 ]. Сила на длину… только из анализа размеров мы можем заметить, что эта сила сдвига на единицу длины будет напряжением, если мы разделим q на шкалу длины. Соответствующая шкала длины в этом случае представляет собой толщину интересующей области, t .

Теперь, из нашего раздела урока по изгибу, посвященного моментам площади, мы знаем, как вычислить Q и I . Прежде чем мы будем беспокоиться о специфике, есть несколько вещей, которые мы можем узнать из этого уравнения прямо сейчас. Начнем с того, что мы знаем: мы можем определите V из наших диаграмм сдвига и момента . Мы можем вычислить I на основе формы всей конструкции , и мы можем определить t из ширины интересующей нас области , т. е. по какой ширине происходит этот сдвиг. Определение Q часто является самой сложной частью задач такого типа — это то, что требует большой практики.

Эти уравнения для напряжения поперечного сдвига можно упростить для обычных инженерных форм. Например, если у вас узкая прямоугольная балка, уравнение упрощается до: 

Где 90 157 c 90 158 – это половина толщины балки, или, как правило, 90 157 c 90 158 – это расстояние от нейтральной оси до внешней поверхности балки. Это уравнение является иллюстративным по нескольким причинам: во-первых, касательное напряжение будет иметь максимальное значение в центре балки, т. е. когда y=0, и будет равно нулю вверху и внизу балки. Это справедливо для балок более сложной формы – поперечный сдвиг вверху и внизу равен нулю. Следующее уравнение применимо для определения максимального напряжения поперечного сдвига в стандартных (S-образных) или широкополочных (W-образных) балках.

 

Резюме

Изгиб может вызывать как нормальное напряжение, так и поперечное напряжение сдвига . Существование этого напряжения сдвига можно увидеть, когда карты слегка скользят друг относительно друга, когда вы сгибаете колоду карт. Величина касательного напряжения становится важной при проектировании толстых или коротких балок на изгиб — балки могут и будут разрушаться при сдвиге при изгибе. Для расчета напряжения поперечного сдвига мы используем приложенную силу сдвига (которую можно получить из диаграммы момента сдвига), первый момент площади и толщины интересующей области и второй момент площади всей конструкции.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *