Установка солнечных батарей в частном доме: Как установить в доме солнечные батареи? С чего начать расчеты? Какие разрешения нужны?

Содержание

Монтаж и установка солнечных батарей для частного дома и дачи своими руками: инструкция- Обзор +Видео

Когда-то рассуждения о том, что электроэнергия будет бесплатной казались фантастическими выдумками. Но прошло время и развитие новых технологий в электроэнергетике привели к тому, что это стало реальностью.

Альтернативные источники энергии завоёвывают все большее количество сторонников по всей планете.

Среди них особой популярностью пользуются солнечные батареи, получившие широкое распространение как в производстве, так и в быту.

[contents]

Содержание:

Область применения

Солнечные батареи, или как их еще иногда называют солнечные панели могут применяться для обеспечения электричеством коттеджных поселков, дачных кооперативов, промышленных предприятий.

Очень эффективны они для санаторных комплексов, гостиниц, больниц, зданий, находящихся вдали от основных линий электропередач.

Можно сказать, что они нужны там, где есть потребность еще в одном источнике энергии и там, где есть возможность их установить. На данный момент солнечными батареями оснащают крыши зданий, домов, устанавливают их в пустынях и на поездах. Существую даже полностью автономные дома на солнечных батареях.

Производство солнечных батарей идет гигантскими темпами и лидерами в этой отрасли являются КНР, США. Германия, страны Персидского Залива, Западной Европы и Скандинавии.

Что такое солнечная батарея?

Это комплекс фотоэлектрических преобразователей, объединенных в систему. Преобразователи превращают энергию Солнца в электричество. Самые новейшие солнечные батареи способны работать с 40 % — ой отдачей. Чтобы достичь такого показателя необходимо соблюдение определённых параметров.

Комплексы батарей выгоднее всего монтировать в тех точках планеты, где количество солнечных и ясных дней является преобладающим, в России это южные районы- Краснодарский край, Сочи и другие.

Следует принимать во внимание географическую широту, на которой находятся здания. Приближаясь к полюсам, солнечная энергия утрачивает часть мощности и эффективность солнечных батарей будет недостаточной.

Если зимой там, где установлены комплексы батарей, достаточно безоблачных дней, они могут в значительной степени снизить нагрузку на коммунальные сети города и обеспечить часть зданий бесплатной энергией.

Виды солнечных батарей

Виды солнечных батарей

Сейчас их классифицируют на 3 категории:

  • Тонкопленочные
  • Монокристаллические.
  • Поликристаллические.

 

Тонкопленочные батареи

Этот комплекс батарей сделан из тонких натянутых плёнок. Они без труда монтируются в практически всех доступных местах.

Защищены от воздействия песка и пыли и способны функционировать в различных неблагоприятных условиях. При наличии облаков их КПД снижается примерно на двадцать процентов. Стоимость их небольшая, но они требуют наличия значительного пространства для своего размещения.

Узнать больше =>>

Монокристаллические батареи

Эти батареи создают множества ячеек, которые потом наполняют силиконом. Из-за хорошей гидроизоляции данные батареи применяются даже на судах.

Их можно размещать и на кровлях зданий. Если нет возможности установить их на солнечную сторону кровли, где конечно же отдача от них будет более высокой, то можно устанавливать и на теневой стороне. Нужно учитывать и тот момент, что рассеянный солнечный свет будет менее эффективен.

Монокристаллические батареи отличаются малым весом, компактны. Они достаточно гибкие, надёжны при эксплуатации и служат длительное время. Монтаж таких батарей не вызывает затруднений.

Но у них есть и недостаток. При отсутствии солнечных лучей и облачности они перестают вырабатывать электрическую энергию.

Узнать больше=>>

Поликристаллические солнечные батареи

В ячейках этих солнечных батарей расположены кристаллы, направленные в самые разные стороны.

Благодаря этому панели могут улавливать рассеянный свет, и намного меньше зависят от прямого солнечного освещения.

Перейти в каталог=>>

Почему именно солнечные батареи?

Может возникнуть вопрос – а почему именно солнечные батареи, а не какие-нибудь еще источники энергии?

  1. Пока светит Солнце, то и солнечные батареи будут вырабатывать электричество.
  2. Такие батареи автономны. Им не нужны централизованные энергосистемы для подключения. Поэтому можно резко сократить расходы на содержание инфраструктуры в городах, на предприятиях и жилом фонде. Власть местных энергетических компаний снижается практически до нуля. Приобретается энергетическая независимость.
  3. В отдаленные районы и городки прокладка кабеля будет стоить огромных денег. Гораздо более выгодно будет установить солнечные батареи. Расходы будут минимальные и нет нужны оплачивать услуги целой бригады монтажников – электриков.
  4. Экологичность. Главный козырь данных батарей. Нет необходимости использовать дорогостоящие, и к тому же невозвратные ископаемые ресурсы. Фотоэлементы батарей не выбрасывают канцерогены, и не увеличивают количество углекислоты в атмосфере планеты. Нет никакой нужды вырубать огромные площади лесов и так пострадавших от деятельности человека.
  5. Отсутствие лицензирования. Постановлений, требующих лицензирование получения электричества посредством таких батарей пока, еще не ввели в действие. Поэтому данным фактором следует воспользоваться, пока не ввели очередную пошлину.
Можно ли использовать солнечные батареи в частном секторе?

Насколько выгодно установить солнечные батареи своими руками для частного дома?

Схема установки

Необходимо вычислить, сколько солнечных дней обычно бывает там, где проживает потребитель. После этого нужно будет разделить стоимость оборудования на 25 лет и подсчитанные солнечные дни в году.

Тогда можно будет и вычислить, стоит ли устанавливать солнечные батареи для дома. Еще нужно будет рассчитать площадь необходимую для получения 1 Квт электричества в регионе вашего проживания.

Все эти данные предоставляют менеджера, продающие солнечные батареи. Кроме того, следует учесть период наибольшей солнечной активности.

Получение горячей воды с батарей

Следующих вопрос, который нужно решить, а для каких целей нужно электричество от солнечных батарей. Обычно оно, нужно для:

  1. Освещение.
  2. Получение горячей воды и отопление.
  3. Работа бытовых приборов.

 

Чтобы подавать горячую воду, можно установить солнечный коллектор.

Стоит он недорого, да и сделать его можно самостоятельно. Он способен функционировать осенью и зимой. В своих домах уже достаточно давно применяют для подогрева воды емкости, функционирующие от энергии Солнца

Освещение дома солнечными батареями также решаемая задача в настоящий момент.

Аккумуляторы в подсобке дома

Здесь важно учесть такой важный момент, как замена аккумуляторов батарей. Зная сколько стоят обычные аккумуляторы для машин, можно будет рассчитать и стоимость обслуживания аккумуляторов для солнечных батарей. Кроме того, необходимо регулярно очищать поверхности батарей от пыли. Сколько нужно солнечных батарей для дома, решать уже нужно исходя из площади дома и целей применения батарей.

Таким образом, комплект солнечных батарей для дома может стоить как достаточно недорого, так и обойтись в круглую сумму.

Но технологии развиваются все быстрее и солнечные батареи для дома будут стоить все дешевле, и будут доступны очень многим потребителям.

Установить солнечные батареи своими руками достаточно просто, вам лишь понадобиться присоединить батареи к контроллеру, который будет передавать заряд к аккумуляторам и с помощью инвертора передавать электроэнергию уже в ваш дом. Удачной электроэнергии!

Солнечная электростанция на дом площадью 200 м² своими руками — Техника на vc.ru

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не два-три часа в сутки, пока работает генератор, а постоянно.

121 433
просмотров

Но это всё как-то далеко от нашей жизни, поэтому я решил на своём примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома.

Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв, может посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я всё это сам собираю.

Исходные данные: частный дом площадью около 200 м² подключён к электросетям. Трёхфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее.

Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение шесть дней подряд на период от двух до восьми часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус — после принятия закона о продаже частными лицами электроэнергии в сеть начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку.

Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги.

Я решил совместить эти два способа. Отчасти потому, что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительстве солнечной электростанции. Обратите внимание, солнечные панели установлены за деревом — так свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности.

То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моём доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счёту, их всего три, но бывают вариации. Расположу по росту стоимости каждой системы.

Сетевая солнечная электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220 В или 380 В в доме и потребляется домашними энергосистемами.

Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества.

Кроме того, со сложившейся инфраструктурой электросети работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счётчики считают энергию «по модулю», то есть отданную в сеть энергию счётчик посчитает как потреблённую, и за неё ещё придётся заплатить.

Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная солнечная электростанция — этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанций. Состоит из четырёх элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор.

Основа всего — гибридный инвертор, который способен в потребляемую от внешней сети энергию подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритизации потребляемой энергии.

В идеале дом должен потреблять сначала энергию от солнечных панелей и только при её недостатке — добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасённой в аккумуляторах.

Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная солнечная электростанция — этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше четырёх стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена гидроэлектростанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен — в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ.

Такая электростанция легко трансформируется в гибридную при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного — это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети.

При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер

Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту.

Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечных электростанциях, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут вопросы.

Солнечный контроллер — это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12 В. И АКБ изготавливаются кратно 12 В, так уж повелось.

Простые системы на 1–2 кВт мощности работают от 12 В. Производительные системы на 2–3 кВт уже функционируют от 24 В, а мощные системы на 4–5 кВт и более работают на 48 В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим, у нас есть система на 48 В и солнечные панели на 36 В (панель собрана кратно 3 х 12 В). Как получить искомые 48 В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48 В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой.

Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передаёт в АКБ. Это упрощённо.

Есть контроллеры, которые могут со 150–200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи, и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ — широтно-импульсная модуляция) и MPPT (Maximum Power Point Tracking — отслеживание точки максимальной мощности).

Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT-контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно большим КПД, но и стоят дороже.

Как выбрать солнечные панели

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус.

Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели.

Но и это не всё. Каждая солнечная батарея — это четырёхслойный пирог: стекло, прозрачная EVA-плёнка, солнечный элемент, герметизирующая плёнка. И вот тут каждый этап крайне важен.

Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии.

От прозрачности EVA-плёнки зависит, сколько энергии попадёт на элемент и сколько энергии выработает панель. Если плёнка окажется бракованной и со временем помутнеет, то и выработка заметно упадёт.

Далее идут сами элементы, и они распределяются по типам в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте элемент будет греться и быстрее выйдет из строя.

Ну и финишная плёнка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей очень быстро на элементы попадёт влага, начнётся коррозия, и панель выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны — это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику.

А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний.

Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория — это Калифорнийская энергетическая комиссия, а вторая лаборатория европейская — TUV.

Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции

Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам.

Цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до восьми часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети.

При этом основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник.

Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей продают всё сопутствующее оборудование, поэтому я начал поиск, отталкиваясь от солнечных батарей.

Один из солидных брендов — TopRay Solar. О нём есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует, и далеко не на последних местах, то есть можно брать.

Кроме того, фирма-продавец солнечных панелей TopRay также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство — вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчёт резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности.

Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300–350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт⋅ч в месяц.

Вот тут и задумаешься над проведением энергетического аудита. И начнёшь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.

Не буду томить, остановился я на более дешёвой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  • Солнечная батарея TopRay Solar 280 Вт Моно — девять штук.
  • Однофазный гибридный инвертор на 5 кВт InfiniSolar V-5K-48 — одна штука.
  • Аккумулятор AGM Парус HML-12-100 — четыре штуки.

Дополнительно мне предложили купить профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить.

Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Что даёт солнечная электростанция

Этот комплект может выдать до 5 кВт мощности в автономном режиме — именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5 кВт + 5 кВт = 10 кВт на фазу. Или можно сделать трёхфазную систему, но я пока довольствуюсь и этим.

Инвертор высокочастотный, а потому достаточно лёгкий (около 15 кг) и занимает немного места — легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить ещё столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше — максимум я видел 2400 Вт. Оптимальный угол — это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100 А⋅ч 48 В, то есть запасено 4,8 кВт⋅ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM, лучше не насиловать.

Итак, у меня есть половина ёмкости, а это 2,4 кВт⋅ч, то есть около восьми часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем, и ещё останется половина ёмкости АКБ на аварийный режим.

Утром уже встанет солнце и начнёт заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить ещё аккумуляторов и генератор. Ведь зимой солнца совсем мало, и без генератора будет не обойтись.

Начинаю собирать

Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня около 25–30 метров, и я заранее проложил два гибких провода сечением 6 мм², так как по ним будет передаваться напряжение до 100 В и ток 25–30 А.

Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями.

Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30 мм болтов, они — своеобразный «крючок» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по три панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115 В без нагрузки и снизить ток, а значит, можно выбрать провода меньшего сечения.

Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения — называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надёжный контакт и быстрое замыкание и размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение, и подключены последовательно для обеспечения напряжения 48В. Далее они подключены к инвертору кабелем с сечением 25 мм².

Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально — в инверторе установлены довольно ёмкие конденсаторы, и они начинают заряжаться в момент подключения к аккумуляторам.

Максимальная мощность инвертора — 5000 Вт, а значит, ток, который может проходить по проводу от АКБ, будет составлять 100–110 А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам.

Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора.

Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя — и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция, и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм. После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции

После запуска солнечной электростанции я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500–2100 Вт во время работы, посудомоечная машина потребляет 400–2100 Вт.

Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днём: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга.

На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии — эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, чтобы взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power).

То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счёт солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии, и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живём, как прежде, пока соседи ходят за водой с вёдрами.

Но есть в наличии дома солнечной электростанции и нюансы:

1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов все следы просто смывались бы дождями.

Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.

2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более инвертор включает вентиляторы активнее, и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.

3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение и отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищённому 25 порту SMTP, а все современные почтовые сервисы вроде Gmail или Mail.ru работают по защищённому порту 465. То есть сейчас фактически оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Заключение

Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило.

Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие числа выработки электричества безмерно радуют, а возможность убрать от компа UPS, зная, что даже при отключении электроэнергии всё продолжит работать, — это приятно.

А когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги.

В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция — это игрушка.

Фотогальваника | Министерство энергетики

Перейти к основному содержанию

Фотогальванические (PV) технологии, более известные как солнечные панели, генерируют энергию с помощью устройств, которые поглощают энергию солнечного света и преобразуют ее в электрическую энергию с помощью полупроводниковых материалов. Эти устройства, известные как солнечные элементы, затем соединяются в более крупные энергоблоки, известные как модули или панели. Узнайте больше о том, как работает PV.

Управление технологий солнечной энергии Министерства энергетики США (SETO) поддерживает проекты исследований и разработок в области фотоэлектрических систем, которые снижают стоимость вырабатываемой солнечной энергией электроэнергии за счет повышения эффективности и надежности. Исследовательские проекты PV в SETO работают над сохранением лидерства США в этой области, и за последние несколько десятилетий они оказали сильное влияние. Примерно половина мировых рекордов эффективности солнечных батарей, которые отслеживаются Национальной лабораторией возобновляемых источников энергии, были подтверждены Министерством энергетики, в основном исследованиями SETO PV. SETO работает над приведенной стоимостью 0,02 доллара за киловатт-час (кВт-ч) для солнечных фотоэлектрических систем коммунального назначения, 0,04 доллара за кВт-ч для коммерческих фотоэлектрических систем и 0,05 доллара за кВт-ч для жилых фотоэлектрических систем на крыше.

В сентябре 2021 года Министерство энергетики опубликовало отчет Solar Futures Study , в котором исследуется роль солнечной энергии в достижении этих целей в рамках обезуглероженной электросети США. Узнайте больше о целях SETO .

В области исследований SETO в области фотоэлектрических систем усилия сосредоточены на нескольких темах. Узнайте больше о них ниже.

Темы исследований

Надежность фотоэлектрических систем и разработка стандартов

Надежность фотоэлектрических систем означает способность этих технологий надежно производить электроэнергию в течение длительного и предсказуемого срока службы.

Узнать больше

Проектирование фотоэлектрических систем и выход энергии

Проектирование фотоэлектрических систем и исследования выхода энергии направлены на то, чтобы понять, как можно сконфигурировать солнечные установки и эксплуатировать их для максимизации выработки энергии.

Узнать больше

Дизайн фотоэлектрических элементов и модулей

Исследования технологий фотоэлектрических элементов и модулей направлены на повышение эффективности и надежности, снижение производственных затрат и снижение стоимости солнечной электроэнергии.

Узнать больше

Фотоэлектрические технологии двойного назначения

Фотоэлектрические технологии двойного назначения (ФЭ), также известные как фотоэлектрические технологии двойного назначения, представляют собой тип фотоэлектрических приложений, в которых фотоэлектрические панели выполняют другую функцию, помимо производства электроэнергии.

Узнать больше

Управление прекращением эксплуатации солнечной фотоэлектрической энергии

Управление прекращением эксплуатации фотоэлектрических систем относится к процессам, которые происходят, когда солнечные панели и все другие компоненты выводятся из эксплуатации.

Узнать больше

Финансирование SETO для исследований в области фотоэлектрических систем присуждается за инновационные концепции и экспериментальные проекты в рамках ряда технологических подходов, которые обещают добиться значительного снижения затрат и обеспечить более быстрое широкомасштабное развертывание. Эти проекты сосредоточены на концепциях, которые могут добиться коммерческого успеха в краткосрочной перспективе или в течение 10-20 лет. Это создает в Соединенных Штатах инновационную экосистему, поддерживающую долгосрочный рост солнечной энергетики. Проектами в этой области исследований управляет группа по фотогальванике и группа по производству и конкурентоспособности. Узнайте больше о программах финансирования SETO и текущих возможностях финансирования. Чтобы увидеть все фотоэлектрические проекты, финансируемые SETO, посетите базу данных исследований солнечной энергии.

Photovoltaics Technologies

  • Crystalline Silicon
  • Cadmium Telluride (CdTe)
  • Copper Indium Gallium Diselenide (CIGS)
  • Perovskites
  • Multijunction (III-V)
  • Organic

More Photovoltaics Information

Основы солнечной фотоэлектрической технологии

Основы проектирования солнечной фотоэлектрической системы

Солнечная производительность и эффективность

Солнечные фотоэлектрические элементы 101: Учебник по солнечным фотоэлектрическим элементам

Руководство домовладельца по переходу на солнечную энергию

Истории успеха в фотоэлектрической отрасли

EERE История успеха — Национальная лаборатория достигает самых точных в мире измерений производительности кремниевых модулей

NREL Министерства энергетики США — одна из немногих аккредитованных лабораторий в мире, которые измеряют и оценивают производительность солнечных фотоэлектрических модулей.

Узнать больше

История успеха EERE — маленькое чудо: новый преобразователь и установка проводки могут повысить производительность фотогальванического модуля

Устройство силовой электроники eIQ Energy позволяет модулям работать независимо, увеличивая выходную мощность.

Узнать больше

История успеха EERE — Гаджет инспектора: новое устройство может обнаруживать дефекты в фотоэлектрических модулях

Сканер Startup Tau Science выявляет признаки повреждения модуля и обеспечивает безопасность ремонтных бригад.

Узнать больше

История успеха EERE — X отмечает успех: проектирование солнечных станций становится высокотехнологичным

Узнать больше

История успеха EERE — исследователи освещают износ солнечных панелей для увеличения срока службы

Исследователи из Университета Кейс Вестерн Резерв используют электролюминесценцию и машинное обучение, чтобы выявить эволюцию деградации солнечных модулей.

Узнать больше

История успеха EERE — международные стандарты производства фотоэлектрических систем повышают доверие инвесторов высокое качество…

Узнать больше

История успеха EERE — решение головоломки эффективности: новые солнечные элементы открывают путь к теоретическому КПД 40%

история успеха EERE — решение головоломки эффективности: новые солнечные элементы открывают путь к 40% теоретическому КПД

Узнать больше

История успеха EERE — Назад к основам: изучение компонентов солнечных батарей

История успеха EERE — Назад к основам: изучение компонентов солнечных батарей

Узнать больше

История успеха EERE — испытание солнечных панелей

История успеха EERE — испытание солнечных панелей

Узнать больше

История успеха EERE — Повышение планки качества фотоэлектрических модулей

Поскольку разработка и кодификация стандартов тестирования фотоэлектрических модулей требует длительного многолетнего процесса, SunShot I Министерства энергетики. ..

Узнать больше

Потенциал солнечной крыши | Министерство энергетики

Офис технологий солнечной энергии

Потенциал солнечных крыш для всей страны — это количество крыш, подходящих для солнечной энергии, в зависимости от размера, затенения, направления и местоположения. Потенциал крыши не эквивалентен экономическому или рыночному потенциалу солнечной энергии на крыше — он не учитывает доступность или стоимость. Скорее, это верхний предел использования солнечной энергии на крышах по всей стране.

Солнечный потенциал крыши для отдельной крыши — это количество солнечной энергии, которое может быть установлено на этой крыше, в зависимости от ее размера, затенения, наклона, местоположения и конструкции. Спутниковые карты, данные об освещенности, характеристики оборудования и другие факторы учитывают предложения, которые установщики представляют клиентам, чтобы помочь им понять потенциальные затраты и преимущества солнечных панелей на их крышах.

Национальный потенциал крыш

Согласно анализу Национальной лаборатории возобновляемых источников энергии (NREL) в 2016 году, в Соединенных Штатах имеется более 8 миллиардов квадратных метров крыш, на которых могут быть установлены солнечные панели, что составляет более 1 тераватта потенциальной солнечной энергии. емкость. С повышением эффективности преобразования солнечной энергии потенциал крыш в стране может быть еще больше. Жилые и другие небольшие крыши составляют около 65% национального потенциала крыш, а 42% жилых крыш приходится на домохозяйства с доходом от низкого до среднего.

По оценкам NREL, в среднем будет строиться 3,3 миллиона домов в год или потребуется замена крыш, что представляет потенциал около 30 гигаватт (ГВт) солнечной мощности в год. Если бы даже небольшая часть этих новых крыш имела солнечные установки, это могло бы оказать значительное влияние на производство солнечной энергии в США.

Потенциал отдельных крыш

Для отдельных крыш национальные лаборатории и частные компании разработали ряд инструментов для оценки количества солнечной энергии, которое может быть установлено на данной крыше. Инструменты, описанные ниже, были частично профинансированы Управлением технологий солнечной энергетики Министерства энергетики США (SETO), чтобы помочь потребителям начать процесс выбора солнечной энергии путем определения солнечного потенциала их домов или предприятий.

EnergySage

EnergySage, предыдущий обладатель награды Incubator, позволяет домовладельцам, предприятиям или некоммерческим организациям оценивать экономию энергии за счет солнечной энергии и связывает их с предварительно проверенными установщиками, которые могут предоставить оценки, специфичные для адреса пользователя. Пользователи могут сравнить их и выбрать систему, которая лучше всего соответствует их потребностям. Счета за электроэнергию используются для оценки потенциальной экономии от солнечной энергии, и было обнаружено, что Energy Sage предлагает клиентам существенную экономию по сравнению с более традиционными продуктами.

PVWatts

PVWatts – это онлайн-инструмент Национальной лаборатории возобновляемых источников энергии (NREL), который оценивает производство энергии и стоимость электроэнергии для подключенных к сети фотоэлектрических (PV) солнечных энергосистем по всему миру. Это позволяет домовладельцам, владельцам бизнеса и некоммерческим организациям легко оценивать производительность потенциальных фотоэлектрических установок на основе онлайн-карты или данных, предоставленных пользователем. Еще одним онлайн-инструментом от NREL является System Advisor Model (SAM), бесплатное программное обеспечение, которое позволяет выполнять подробный анализ производительности и финансовый анализ систем возобновляемой энергии.

Sun Number

Предыдущий лауреат премии Incubator, Sun Number выставляет числовой балл, отражающий пригодность крыши здания для использования солнечной энергии по шкале от 1 до 100, где 100 – идеальная крыша для использования солнечной энергии. Доступ к баллам можно получить, введя действительный адрес в регионе, где был выполнен анализ. Оценка Sun Number создается на основе аэрофотоснимков, которые обрабатываются с помощью запатентованных алгоритмов для точного анализа отдельных крыш и на основе комбинации факторов, каждый из которых имеет уникальный вес для обеспечения точного анализа крыши. Факторы включают форму крыши, окружающие здания, окружающую растительность, региональную изменчивость и атмосферные условия. Компания также сотрудничала с Zillow, онлайн-провайдером услуг по размещению списков домов, кульминацией которого стало добавление списков с солнечным потенциалом к ​​описаниям более 40 миллионов домов.

Бизнес-инструменты

Aurora Solar

Aurora Solar Inc., предыдущий лауреат премии Incubator, разработала веб-приложение, которое быстро вычисляет солнечный потенциал крыши здания. Приложение использует алгоритмы распознавания изображений и компьютерного зрения для оценки и сравнения многих потенциальных сайтов.

dGen: рыночный спрос на распределенную генерацию

Этот инструмент моделирует принятие клиентами распределенных энергетических ресурсов для жилых, коммерческих и промышленных предприятий в США или других странах до 2050 года. Он может анализировать ключевые факторы, которые повлияют на рынок в будущем. потребность в распределенном энергетическом ресурсе. В будущем dGen станет инструментом с открытым исходным кодом.

Folsom Labs

Folsom Labs, предыдущий лауреат премии Incubator, разработал генератор разрешений на использование солнечной энергии — программный механизм для автоматического создания стандартных документов для инспекторов и уполномоченных органов (AHJ). AHJ требуют эти документы для разрешения солнечных батарей в их юрисдикции. Программное обеспечение использует HelioScope, проектно-конструкторский продукт, предлагаемый Folsom Labs, для быстрого создания разрешительных документов, однолинейных схем, планов участка и деталей проекта.

Национальная база данных по солнечному излучению

Этот инструмент обеспечивает последовательную полную коллекцию часовых и получасовых значений метеорологических данных и трех наиболее распространенных измерений солнечного излучения: глобального горизонтального, прямого нормального и диффузного горизонтального излучения.

PVLib

PVLib — это пакет программного обеспечения с открытым исходным кодом, который позволяет пользователям моделировать работу фотогальванических энергетических систем. Существуют две разные версии (pvlib-python и PVILB для Matlab), которые значительно расширились благодаря вкладу активного сообщества пользователей.

ReEDS: Региональная система развертывания энергетики

ReEDS моделирует инвестиционные решения в секторе электроэнергетики на основе системных ограничений и потребностей в энергии и вспомогательных услугах. Его высокое пространственное разрешение и передовые алгоритмы позволяют представить стоимость, ценность и технические характеристики интеграции технологий возобновляемой энергии.

REopt Lite: интеграция и оптимизация возобновляемых источников энергии

REopt Lite рекомендует оптимальное сочетание технологий возобновляемой энергии, традиционной генерации и хранения энергии для достижения целей экономии, устойчивости и энергоэффективности.

reV: Модель потенциала возобновляемой энергии

reV — это первый в своем роде инструмент оценки пространственно-временного моделирования, который позволяет пользователям рассчитывать мощность, выработку и стоимость возобновляемой энергии на основе геопространственного пересечения с сетевой инфраструктурой и землей. -характеристики использования.

System Advisory Model

Эта бесплатная технико-экономическая программная модель, также известная как SAM, позволяет моделировать технические характеристики и проводить финансовый анализ проектов по возобновляемым источникам энергии. SAM объединяет данные о погоде во времени и характеристики системы для расчета потенциального производства электроэнергии и использует данные о стоимости системы, компенсациях, финансировании и стимулах в годовом денежном потоке для расчета приведенной стоимости энергии, чистой приведенной стоимости, периода окупаемости, внутренней нормы прибыли, и доход потенциального проекта.

Дополнительные ресурсы

  • Технический потенциал фотоэлектрических систем на крыше в США
  • Справочник домовладельца по федеральной налоговой льготе для солнечных фотоэлектрических систем
  • Руководство по федеральному инвестиционному налоговому кредиту для коммерческих солнечных фотоэлектрических систем
  • Технический потенциал фотоэлектрических систем на крышах в США (набор данных)

 

Узнайте больше о доступных ресурсах солнечной энергии и исследованиях солнечной энергии Министерства энергетики.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *