Шведская плита — технология строительства и утепления
- Стена здания.
- Отделка пола.
- Железобетонная плита.
- Трубы теплого пола.
- Теплоизоляция ПЕНОПЛЭКС®ГЕО.
- Отмостка.
- Песок с послойным трамбованием.
- Геотекстиль.
- Грунт основания.
- Дренаж.
«Утепленная шведская плита» (УШП) представляет собой монолитный плитный фундамент мелкого заложения, где плита снизу и по периметру окружена слоем теплоизоляции. Иными словами, монолитная железобетонная фундаментная плита устанавливается на слой теплоизоляции, а также утепляется слоем теплоизоляции по всей боковой поверхности.
Применение
УШП применяется, преимущественно, в малоэтажном строительстве на равнинных участках земли. Небольшая глубина позволяет возводить шведскую плиту практически на любых основаниях при любом уровне грунтовых вод, а благодаря утеплению со всех сторон грунт под таким фундаментом не промерзает и не пучинится.
Описание
Слой утеплителя плиты устанавливается на утрамбованной подушке из крупного песка или щебня (непучинистая подготовка грунта). При комбинации этих двух слоев грунт более мелкой фракции располагается над более крупным, оба они разделяются геотекстильным материалом. Для обеспечения нормальной работы УШП и предотвращения морозного пучения под этой подушкой предусматривается системы отвода грунтовых вод (дренажная система по периметру сооружения).
Инженерные коммуникации дома (водопровод, канализация, электроснабжение и т.д.) располагаются под слоем теплоизоляции.
Фундаментная плита образуется путем заливки бетона в «форму» из теплоизоляции. В плиту может быть интегрирована система подогрева пола, которая может служить для отопления дома. Теплоносителем в системе может служить горячая вода или антифриз (если зимой в помещении не будет возможности всегда поддерживать плюсовую температуру). В качестве отопительных трубопроводов могут использоваться практически все виды труб: стальные (из нержавеющей стали) металлопластиковые, медные, полипропиленовые, полибутиленовые и т. д.
Принципиальная схема устройства утепленной шведской плиты
В качестве теплоизоляции плитного фундамента, выполненного по технологии утепленной шведской плиты рекомендуется применять высокопрочные плиты из экструзионного пенополистирола ПЕНОПЛЭКС®ГЕО.
Преимущества ПЕНОПЛЭКС®ГЕО применительно к УШП
- Коэффициент теплопров одности— 0,032 Вт/м•КОдин из самых низких среди утеплителей, применяемых в строительстве
- Высокая прочность Плиты ПЕНОПЛЭКС®ГЕО обладают прочностью на сжатие не менее 0,30 МПа (30 т/м2)
- Нулевое водопоглощение Стабильно высокие теплозащитные свойства.
- Удобство и безопасность монтажа Удобная геометрия плит, простота обработки и монтажа
- Монтаж при любых погодных условиях
- Г-образная кромка по всем сторонам плиты Позволяет плотно стыковать плиты без образования мостиков холода
- Абсолютная биостойкость Безопасна при контакте с водой и почвой.
Не является матрицей для развития нежелательных микроорганизмов
- Безопасность Не содержит в составе мелкие волокна, пыль, фенолформальдегидные смолы, сажу, шлаки. Монтаж производится без средств для защиты органов дыхания
- Экологичность Безопасное сырье, изготовление по передовым бесфреоновым технологиям.
- Долговечность более 50 лет Протокол испытаний НИИСФ РААСН № 132-1 от 29.10.2001
Основные преимущества утепленной шведской плиты с применением теплоизоляции ПЕНОПЛЭКС
®ГЕО:
-
Устройство фундамента и прокладка инженерных коммуникаций выполняются на одной технологической стадии, что позволяет сократить сроки строительства. -
Высокоэффективная теплоизоляция ПЕНОПЛЭКС®ГЕО позволяет существенно сократить расходы на отопление дома и повысить эффективность системы «теплого пола»; -
Почва под утепленной плитой не промерзает, что сводит к минимуму риски возникновения проблем морозного пучения грунтов основания; -
Обустройство фундамента не требует тяжелой техники и специальных инженерных навыков.
Технология УШП с применением теплоизоляции ПЕНОПЛЭКС®ГЕО базируется на основных принципах проектирования и устройства малозаглубленных фундаментов на пучинистых грунтах, описанных в Стандарте организации (СТО 36554501-012-2008), разработанном научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений (НИИОСП) им. Н.М. Герсеванова (подразделение ФГУП НИЦ «Строительство»), ФГУП «Фундаментпроект», МГУ им. М.В. Ломоносова (геологический факультет, д.т.н. Л.Н. Хрусталев) и техническим отделом ООО «ПЕНОПЛЭКС СПб».
Типичные ошибки при устройстве фундамента УШП — ТЕХНОНИКОЛЬ
Помимо наличия системы обогрева и полностью готового к отделке пола первого этажа, отличительная особенность технологии состоит также в том, что основание плиты составляет специально разработанный для этой системы высокопрочный утеплитель из экструзионного пенополистирола. Обогрев пола в союзе с качественным утеплением позволяет и вовсе обойтись без радиаторного отопления на первом этаже.
Достоинств у УШП много: это и скорость возведения, и универсальность (подходит практически для всех типов грунтов), и высокая тепловая инерционность. Но, пожалуй, одно из главных преимуществ фундамента, достигаемое за счет применения современного теплоизоляционного материала в конструкции, – его энергоэффективность. Потери тепла через Утепленную шведскую плиту минимальны, а способность накапливать тепло за время эксплуатации и вовсе позволяет не переживать даже в случае аварийного отключения отопления зимой.
Технология, появившаяся в США в 30-е годы прошлого столетия, в России только недавно отметила 10-летний юбилей. Недостаток опыта отечественных строителей иногда становится причиной ошибок при строительстве УШП.
Все начинается с основы
Строительство УШП, как, впрочем, и любого другого фундамента, заключается в грамотной подготовке основания. В случае с Утепленной шведской плитой оно должно быть ровным. Сложный рельеф и ландшафт с перепадами высот уже служат противопоказанием для строительства УШП.
После того как строители убедились, что участок подходит указанным требованиям, нужно приступить к выемке грунта. Этот этап некоторые считают несущественным и очень часто пренебрегают им, закладывая в свой фундамент мину замедленного действия. Плохая подготовка основы рано или поздно скажется на несущей способности фундамента.
Выемка грунта производится на 30–40 см, после чего котлован послойно засыпается щебнем и песком. При этом важно каждый слой отдельно пролить водой и протрамбовать виброплитой. А можно не трамбовать и не проливать? Здесь ответ звучит категорично: «Нет». Притоптать ногами, оставить на некоторое время под открытым небом, чтобы песок смочился дождевой водой и утрамбовался под собственным весом, – все это решения, в которых заложен максимальный риск потери прочности будущего плитного фундамента. Залог долговечности УШП – прочное основание.
Зачем УШП дренаж
Еще одна популярная ошибка при возведении УШП – отказ от дренажа. А между тем он выполняет очень важную функцию – отводит излишнюю воду от фундамента. В противном случае скопившаяся вода при замерзании и оттаивании будет то увеличиваться, то уменьшаться в объеме, вызывая тем самым подвижки грунта. А это в свою очередь вполне может стать причиной деформаций самого фундамента. Важно не пренебрегать дренажной системой независимо от типа грунта и уровня грунтовых вод.
Технология строительства УШП подразумевает не только устройство дренажа, но и наличие утепленной отмостки вокруг дома. В комплексе эти меры отводят воду от фундамента и служат хорошей профилактикой против воздействия сил морозного пучения.
Теплоизоляция любит счет
Расчет толщины теплоизоляционного слоя – один из самых важных этапов строительства УШП. Иногда по незнанию или в попытках сэкономить строители уменьшают толщину материала. В этом вопросе важно понимать, что наличие теплоизоляционного слоя связано не только с теплотехникой. Дело в том, что двуслойная укладка плит утеплителя позволяет, во-первых, уменьшить толщину железобетонной плиты, а значит, сократить расход бетонной смеси для ее возведения, а во-вторых, сформировать структуру фундамента. Именно с их помощью формируется конструкция, напоминающая перевернутый стакан, – с армированной лентой по периметру и армированной плитой сверху.
Уменьшение теплоизоляционного слоя просто не позволит справиться с данной задачей. Кроме того, благодаря плитам теплоизоляции весь тепловой поток уходит в помещение, а не в грунт.
Правила выбора утеплителя для УШП
При выборе теплоизоляции для УШП в первую очередь стоит обращать внимание на показатель прочности на сжатие. Учитывая, что утеплитель будет подвергаться колоссальным нагрузкам, он должен сохранить форму и свойства в течение всего срока эксплуатации. Материал, уложенный в ребрах жесткости, испытывает давление от самого фундамента и несущих конструкций дома.
В большинстве случаев для утепления УШП используется XPS (экструзионный пенополистирол). Это прочный материал с низким коэффициентом теплопроводности, устойчив к агрессивным средам, не боится воды. Практически нулевое водопоглощение принципиально важно, поскольку материал в течение всего срока эксплуатации находится под нагрузкой во влажных условиях. Не будем забывать, что утеплитель в конструктиве УШП укладывается непосредственно на грунт, а поверх него монтируется бетонная плита, которая также имеет определенную влагу.
Но и экструзионный пенополистирол в зависимости от сферы применения обладает разными прочностными характеристиками. Тот, что активно применяется для утепления полов, не подойдет в качестве теплоизоляции УШП. Существуют специальные марки, разработанные для применения в условиях повышенных нагрузок. Пример – XPS CARBON ECO SP. Он имеет особо высокую прочность на сжатие 400 кПа при 10 % деформации и 200 кПа при 2 % деформации.
Таким образом, ошибочный выбор утеплителя влечет за собой несколько серьезных проблем. Первая из них – это потеря теплоизоляционных свойств из-за намокания, это в том случае, если выбран материал, способный впитывать влагу. И вторая проблема связана с разрушением утеплителя, если его прочность оказалась ниже той, что требует технология.
Мостики холода – как не допустить при укладке утеплителя
Теплоизоляционный слой при устройстве УШП должен быть максимально однородным. Казалось бы, очевидный факт. Тем более что все для этого предусмотрено: материал с низким коэффициентом теплопроводности, монтаж в два слоя. Но тут важно помнить, что плиты XPS укладываются с разбежкой швов, именно такой способ повышает однородность теплоизоляции. В противном случае стыки станут пусть и небольшими, но все же мостиками холода. А вот при монтаже L – блоков перекрытие стыков осуществляется за счет L-кромок.
Плиты на замок
Также стоит обратить внимание на формирование L-блоков. Фактически L-блок – это утепленная несъемная опалубка. Соответственно, его необходимо делать из материала высокой прочности, монтировать так, чтобы избежать образования щелей. В противном случае при укладке бетона раствор начнет просачиваться через образовавшиеся зазоры. Если щель все же образовалась, то ее нужно устранить, например, при помощи клей-пены для экструзионного пенополистирола. L – блоки в обязательном порядке должны скрепляться специальными угловыми крепежами, поскольку это зоны, испытывающие дополнительную нагрузку. Иначе в процессе укладки бетонной смеси они вполне могут потерять проектное положение.
Еще немного о нюансах
Процесс устройства УШП соткан из деталей. Как и в любой стройке, каждая из них вносит свою лепту в обеспечение долговечности всей конструкции. Нужно помнить, что укладка бетонной смеси и работа с клей-пеной возможны только при положительных температурах.
Есть и другие детали, о которых следует помнить. Так, например, при укладке арматуры важно вязать ее на земле, а затем при переносе на слой из XPS устанавливать на специальные подставки, известные в профессиональной среде как «стульчики». Еще один важный нюанс касается укладки бетонной смеси – ее необходимо вибрировать, а также осуществлять по всей площади фундамента (не допускается частичная укладка в разное время), чтобы избежать холодных швов. Вибрирование позволяет улучшить прочностные показатели бетона за счет того, что устраняются лишние пузырьки воздуха.
УШП – один из самых энергоэффективных фундаментов. Внимание к деталям и правилам позволит в короткие возвести фундамент, который на долгие годы станет прочной и энергоэффективной опорой.
Формула для расчета числа теоретических тарелок: SHIMADZU (Shimadzu Corporation)
Добавить закладку
Введение
N, количество теоретических тарелок, является одним из показателей, используемых для определения производительности и эффективности колонок, и рассчитывается по уравнению (1).
・・・1) где tr: время удерживания и W: ширина пика
Ширина этого пика, W, основана на пересечении базовой линией касательных линий к гауссовому пику, что эквивалентно ширине пика на уровне 13,4 % от высоты пика.
Однако для упрощения расчета и учета негауссовых пиков на практике используются следующие методы расчета.
Рис. 1 Ширина пика
1. Метод касательной линии
Ширина пика — это расстояние между точками, в которых линии, касающиеся левой и правой точек перегиба пика, пересекают базовую линию, рассчитывается по уравнению (1). Этот метод используется в USP (Фармакопея США). Это приводит к малым значениям N при большом перекрытии пиков.
Это также представляет проблему, если пик искажен, так что он имеет несколько точек перегиба.
・・・1)
2. Метод половинной высоты пика
Ширина рассчитывается по ширине на половине высоты пика (W 0,5 ). Поскольку ширину можно легко рассчитать вручную, это наиболее широко используемый метод. Это метод, используемый DAB (Немецкая фармакопея), BP (Британская фармакопея) и EP (Европейская фармакопея).
・・・2)
Японская фармакопея 15-й редакции, выпущенная в апреле 2006 г., изменила коэффициент с 5,55 до 5,54.
(LCsolution позволяет выбрать коэффициент с помощью настройки [Column Performance], где метод расчета для 5,54 — «JP», а для 5,55 — «JP2».
Для более широких пиков метод половинной высоты пика приводит к большим значениям N чем другие методы расчета
・・・2)
3. Метод Area Height
Ширина рассчитывается на основе значений площади пика и высоты. Этот метод обеспечивает относительно точную и воспроизводимую ширину даже для искаженных пиков, но приводит к несколько большим значениям N при значительном перекрытии пиков.
・・・3) A: Площадь, H: Высота
4. Метод ЭМГ (экспоненциально модифицированный гауссов)
В этом методе вводятся параметры, учитывающие асимметрию пиков, и используется ширина пика на уровне 10 % высоты пика (W 0,1 ). Поскольку он использует ширину вблизи базовой линии, он приводит к большим значениям N, чем другие методы для широких пиков. Кроме того, он не может вычислить ширину, если пик полностью не отделен.
・・・4) a 0,1 : Ширина первой половины пика на 10 % высоты b 0,1 : Ширина второй половины пика на высоте 10 %
Сравнение методов расчета
Учитывая пик Гаусса, каждый из этих методов расчета дает одно и то же значение N. Однако обычно пики имеют тенденцию иметь некоторый хвост, что приводит к различным значениям N для разных методов расчета.
Таким образом, четыре метода расчета сравнивались с использованием хроматограмм. Профиль A показывает типичную хроматограмму (с небольшим хвостом), тогда как профиль B показывает хроматограмму со значительным хвостом. Теоретическое количество тарелок, рассчитанное с использованием четырех методов, указано в таблице ниже. Результаты для N различались даже для хроматограммы A. Кроме того, пики с более значительным искажением, такие как пик 1 на профиле B, могут привести к многократным различиям значений N.
Ключевым фактором для проведения надежного количественного анализа является возможность или невозможность разделения, поэтому существует общее мнение, что более практичным является метод расчета, который оценивает более широкие пики, например, с хвостом. Однако, к сожалению, единого мнения относительно N и W, по-видимому, нет.
Следовательно, если для оценки уже используется определенный метод, то для достижения корреляции, вероятно, предпочтительнее продолжать использовать тот же метод.
Рис. 2 Хроматограммы
Сравнение теоретического количества чашек
A (примерно типичный пик) | B (значительный хвост) | |||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Метод половинной высоты пика | 15649 | 20444 | 20389 | 22245 | 5972 | 7917 | — | 9957 |
Метод касательной линии | 14061 | 18516 | 20309 | 21447 | 5773 | 7692 | 5795 | 9707 |
Метод площади и высоты | 13828 | 19207 | 17917 | 21020 | 4084 | 7845 | 6217 | 8641 |
Метод ЭМГ | 10171 | 15058 | 14766 | 17836 | 1356 | — | — | 4671 |
Дефис означает, что расчет был невозможен. В методе половинной высоты пика в качестве коэффициента использовали 5,54.
Программное обеспечение рабочей станции LC компании Shimadzu может выводить отчеты о производительности с использованием любого из указанных выше методов: 1. касательная линия, 2. высота полупика (5,54), 2 фута. высота половины пика (5,55), 3. высота области или ЭМГ. Мы рекомендуем записывать соответствующие результаты работы колонки вместе с аналитическими результатами!
- Линейка продуктов для жидкостной хроматографии
- Линейка жидкостных хроматографов и масс-спектрометров
ДВУСТОРОННЯЯ ШПИЛЬКА MiTek RSP4 USP
Подтверждение отгрузки
Этот товар недоступен для доставки и не будет добавлен в вашу корзину.
Этот товар доступен для доставки и добавлен в вашу корзину.
Этот товар может быть доставлен только в некоторые места
Пожалуйста, введите почтовый индекс доставки ниже, чтобы определить право на доставку:
Неверный почтовый индекс. Пожалуйста, введите 5-значный почтовый индекс США.
.
Товар(ы) добавлен
Добавить продукт(ы) в список избранного
Товар(ы) добавлен(ы) в {{ listName }}
Список моих любимых{{ name }}
Mfg#: {{ selectedVariant.partNumber }} |
Артикул №: {{ selectedVariant.code }}
МиТек
Было: {{ selectedVariant.defaultPrice.formatted }}
{{initialPrice}} {{unitOfMeasure}}
Позвоните в свой филиал, чтобы узнать цену
{{deliveryTime.warehouseCity}} {{deliveryTime.warehousePhoneNumber}}
{{ selectedVariant. mapPrice.formatted }} {{ unitOfMeasure }}
{{ selectedVariant.finalPrice.formatted }} {{ unitOfMeasure }}
Позвоните в свой филиал, чтобы узнать цену
{{deliveryTime.warehouseCity}} {{deliveryTime.warehousePhoneNumber}}
Доступно для заказа
{{deliveryTime.warehouseCity}} {{deliveryTime.warehousePhoneNumber}}
РАСПРОДАНО
{{ row.name }}: {{ row.currentActiveSwatch.label }}
- {{ образец.метка }}
Пожалуйста, выберите вариант продукта
Количество:
Бесплатная доставка этого товара!
Проверьте предполагаемую доставку, введите почтовый индекс
Неверный почтовый индекс. Пожалуйста, введите 5-значный почтовый индекс США.
Изменить расчетный почтовый индекс доставки
Пожалуйста, выберите продукт, чтобы получить информацию о доставке
Цены указаны на основе введенного почтового индекса; цены могут отличаться, если адрес доставки находится в другом почтовом индексе/местоположении.
информация о продукте
Крепежная пластина 20-го калибра для крепления к дереву.
- Для скрепления дерева
Технические характеристики
{{ атрибут.![]() |