Использование композитной арматуры: Область применения композитной арматуры

Содержание

15 способов применения стеклопластиковой арматуры в строительстве

В данной статье разберем и подробно опишем 15 способов как и где наиболее часто применяют стеклопластиковую композитную арматуру.

1. Фундаментные плиты

Технология армирования фундаментных плит при малоэтажном сторительстве не выше трех этажей с применением стеклопластиковой композитной арматуры происходит путем замены металлической арматуры на стеклопластиковую согласно таблице равнопрочной замены.

Правильная замена на стеклопластиковую арматуру гарантированно приводит к существенной экономии денежных средств, т.к. стеклопластиковая арматура дешевле металлической. Принцип армирования фундаментых плит стеклопластиковой арматурой не отличается от армирования металлической арматурой, но приводит к существенной экономии времени на монтаже.

При замене металлической арматуры на стеклопластиковую нет необходимости уменьшать шаг армирования.

При необходимости удленения хлыста стеклопластиковой арматуры соединение происходит в нахлест. Длинна нахлеста от 20 до 50 см.

Вязка стеклопластиковой арматуры осуществляется вязальной проволокой, резка стеклопластиковой арматуры осуществляется шлифовальной машинкой — «болгаркой».

2. Ленточные фундаменты

Армирование ленточного фундамента с применением стеклопластиковой арматуры происходит путем замены металлической арматуры на стеклопластиковую согласно таблице равнопрочной замены.

Таблица равноправной замены металлической арматуры на композитную стеклопластиковую арматуру

Металлическая класса А-III (A400C)Арматура композитная полимерная стеклопластиковая ОЗКМ (АКС)
6 А-III4 АКС
8 А-III5,5 АКС
10 А-III6 АКС
12 А-III8 АКС
14 А-III10 АКС
16 А-III12 АКС
18 А-III14 АКС
20 А-III16 АКС

Правильная равнопрочная замена металлической арматуры на стеклопластиковую позволит Вам получить экономическую выгоду до 45% (экономия в 2 раза).

При замене металлической арматуры на стеклопластиковую нет необходимости увеличивать количество слоев армирования и количества хлыстов в одном слое.

При необходимости удленения хлыста стеклопластиковой арматуры соединение происходит в нахлест. Длинна нахлеста от 20 до 50 см.

Вязка стеклопластиковой арматуры так же осуществляется вязальной проволокой, резка стеклопластиковой арматуры осуществляется «болгаркой».

3. Армирование промышленных бетонных полов

Армирование промышленных бетонных полов с применением стеклопластиковой композитной арматуры происходит путем замены металлической арматуры на стеклопластиковую согласно таблице равнопрочной замены.

Правильная замена на стеклопластиковую арматуру при армировании промышленных бетонных полов так же приводит к существенной экономии денежных средств, т.к. стеклопластиковая арматура дешевле металлической.

Принцып армирования стеклопластиковой арматурой не отличается от армирования металлической арматурой, но приводит к существенной экономии времени на монтаже.

При замене металлической арматуры на стеклопластиковую нет необходимости уменьшать шаг армирования.

При необходимости удленения хлыста стеклопластиковой арматуры соединение происходит в нахлест. Длинна нахлеста от 20 до 50 см.

Вязка стеклопластиковой арматуры осуществляется вязальной проволокой, резка стеклопластиковой арматуры осуществляется шлифовальной машинкой — «болгаркой».

4. Отмостки вокруг зданий

Отмостка — это полоса шириной от 0,6м до 1,2 м, которая примыкает к фундаменту или цоколю здания с уклоном.

Уклон отмостки должен быть не менее 1% (1 см на 1 м) и не более 10 % (10 см на 1м).

Отмостку вокруг здания рекомендуется возводить с использованием стеклопластиковой арматуры, так как главная задача отмостки — это отвод поверхностных дождевых и талых вод от стен и фундамента дома. Отмостка с применением стеклопластиковой арматуры прослужит в несколько раз дольше, так как у стеклопластиковой арматуры высокие антикоррозийные свойства, что препятствует возникновению трещин в бетоне.

5. Армопояс (сейсмопояс) между этажами кирпичных или блочных зданий

  

Применение стеклопластиковой композитной арматуры при армировании армопояса (сейсмопояса) между этажами кирпичных или блочных зданий за счет высоких прочностных характеристик повышает пространственную жесткость здания и защищает фундамент и стены от трещин, вызванных неравномерной осадкой и морозным пучением грунта.

6. Связующее для кирпичной кладки

Для увеличения прочности кирпичной кладки и соблюдении одинаковой толщины швов необходимо воспользоваться прутами из стеклопластиковой арматуры диаметрами Ф4 и Ф6, вместо металлической сетки.

Толщина диаметра арматуры зависит от толщины шва в кирпичной кладке.

Замена металлической кладочной сетки на пруты из стеклопластика позволит снизить затраты на армирующий материал более чем в 5 раз.

Так же применение стеклопластиковых прутов в кирпичной кладке позволит существенно сократить потери тепла, так как стеклопластиковая арматура плохо проводит тепло, в несколько раз хуже, чем металл.

7. Связующее для кладки стен из блоков/кирпича, для монолитных стен

Для увеличения прочности при кладки стен из блоков/кирпича, для монолитных стен и регулировании толщины швов рекомендуется использовать пруты из стеклопластика диаметрами Ф4, Ф6 и Ф8 вместо металлической сетки. Толщина диаметра арматуры зависит от толщины шва при кладке.
Замена металлической кладочной сетки на пруты из стеклопластика позволит снизить затраты на армирующий материал более чем в 5 раз.

Так же применение стеклопластиковых прутов позволит существенно сократить потери тепла, так как стеклопластиковая арматура плохо проводит тепло, в несколько раз хуже, чем металл.

8. Комбинирование с металлом в плитах перекрытий

Плиту перекрытия армируют в два слоя. Нагрузка на плиту перекрытия идет с верхней части вниз и распределяется относительно всей площади покрытия. Соответственно, основная рабочая арматура находиться в нижнем слое и испытывает большие нагрузки на растяжение. Верхний слой, в основном, получает нагрузки на сжатие.

В данном случае стеклопластиковую арматуру применяют комбинированно с металлической. Верхний слой необходимо выполнить из стеклопластиковой арматуры, нижний — из металлической.

В самой сетке стеклопластиковая композитная арматура должна иметь цельный вид без наличия разрывов. Если происходит армирование перекрытия с помощью стеклопластиковой арматуры Ф10, то необходимо выполнить нахлест в 400 мм. Все стыки арматуры следует располагать в шахматном порядке.

9. Гибкие связи

Гибкая связь используется для соединения внутренней стены через утеплитель (и воздушный слой) с облицовочной стеной в единое целое в системе трехслойных стен.

Композитные гибкие связи производство ООО «ОЗКМ» — это стержни, изготовленные из стеклопластика длиной от 200 до 600 мм с периодической рельефной поверхностью либо стержни с круглым сечением (зависит от проектного решения). Благодаря этому гибкие связи «ОЗКМ» обладают высокой адгезией с бетоном и дополнительной защитой от агрессивного воздействия щелочной среды бетона.

Гибкие связи применяются:

  • для кирпичной кладки (Ф 6 мм),
  • для утепления монолитных зданий (Ф 6 мм),
  • для блоков (Ф 4 мм),
  • для панельного домостроения (Ф 6 мм).

Нашем сайте вы можете подробнее узнать о композитных гибких связях и заказать их.

10. Ленточные фундаменты под заборы

Ленточные фундаменты предусматриваются для следующих типов ограждений: забор с кирпичными столбами, металлический кованый забор и забор из лесоматериала или профнастила с несущими металлическими стойками.

Армирование фундамента под забор с использованием стеклопластиковой арматуры очень выгодно. За счет высоких прочностных характеристик арматуры из стеклопластика и невысоких нагрузок, при армировании фундамента под забор чаще всего используется композитная арматура диаметрами Ф4 и Ф6.

Технология армирования ничем не отличается от технологии при использовании металлической арматуры, но значительно дешевле и быстрее по времени. Продольные пруты стеклопластиковой арматуры укладываются на дно вырытой траншеи на опоры высотой 4-7 см. Крайние прутья из стеклопластика должны отступать от стенок траншеи на 6-8 см.

Поперечная арматура и вертикальные стойки обычно вяжутся с шагом 400 мм.

Верхний ряд продольной арматуры крепится на стойки так, чтобы он был ниже верхнего уровня траншеи на 5-7 см. Затем выполняется укладка поперечной стеклопластиковой арматуры верхнего ряда.

11. Армирование чаши для бассейна (дна и стенок)

12. Дорожное строительство

Стеклопластиковая арматура получает отзывы строителей положительные ввиду ее универсальности, так как ее можно применять для усиления прочности дорожного полотна, опор, мостов.

13. Пешеходные бетонные дорожки

Для придания жесткости бетонной дорожки необходимо произвести армирование основания, хотя многие этим пренебрегают.
При армировании пешеходной дорожки стеклопластиковой арматурой толщину бетонного основания можно делать меньше, что приводит к существенной экономии по затратам на бетоне.

Так же использование арматуры из стеклопластика для армирования пешеходных дорожек защищает бетон от распадания на фрагменты.

14. Бетонные площадки для проезда и парковки автомобилей.

Перед началом армирования сверху под бетонную площадку на песчаную подушку засыпают слой щебня в 5 см и уплотняют его. Армирование стеклопластиковой арматуры усиливает бетонную структуру, поэтому при устройстве площадки под стоянку автомобиля без нее не обойтись.
Бетонирование площадки для проезда и парковки автомобиля осуществляют при помощи стеклопластиковой арматуры, которую нарезают прутьями необходимой длины. Рекомендуется использовать стеклопластиковую арматуру диаметровом Ф6.

Каркас из арматуры изготавливают непосредственно на месте укладки и не займет много времени. Стеклопластиковые прутья размещают крест-накрест и в точках стыковки перевязывают проволокой.

15. Армирование монолитных бетонов содержащих противоморозные добавки.

Стеклопластиковая арматура, в отличие от металла, устройчива к щелочной среде. Противоморозные добавки состоят из щелочи и солей, вызывающие коррозию у металла.

Применение стеклопластиковой арматуры при армировании монолитных бетонов содержащих противоморозные добавки увеличивает срок службы бетонного основания в несколько раз и препятствует возникновению трещин и защищает бетон от распадания на фрагменты.

Перейти к каталогу продукции

Области применения композитной арматуры, разбираем подробно

СтеклоПласт » Полезные материалы » Область применения композитной арматуры

О свойствах и характеристиках пластиковой арматуры сказано уже немало, но вместе с тем у потребителей остается немало вопросов о том, в каких именно сферах наиболее целесообразным является применение армирования из композитных материалов.

Прежде всего, следует отметить, что использование стеклопластиковой или другой композитной арматуры в конструкциях и сооружениях должно осуществляться в соответствии с требованиями проектной документации. Однако наиболее востребована композитная арматура в сферах, где материалы подвержены воздействию агрессивных сред, а также там, где особо ценится небольшой вес такой арматуры, низкая теплопроводность, высокая прочность и ее коррозийная устойчивость.

  1. Стеклопластиковая арматура отлично показала себя в дорожном строительстве. При необходимости увеличения прочности дорожного полотна широко используются композитные армирующие материалы. Кроме этого с помощью пластиковой арматуры добиваются улучшения качественных характеристик мостов и оградительных опор.
  2. Поскольку стеклопластиковая арматура отличается небольшим весом и практически не растягивается, то этим оправдывается активное использование ее при изготовлении фундаментов. К тому же, как известно, коэффициент температурного расширения пластиковой арматуры приблизительно такой же, как у бетона, поэтому при использовании ее для армирования фундамента можно избежать появления трещин.
  3. В ряде случаев стеклопластиковая арматура успешно используется при создании опор для линий электропередач (ЛЭП) высокого напряжения, осветительных опор. Применение оправдано к тому же тем, что пластиковая арматура практически не проводит ток, что сводит к минимуму потери энергии и способствует безопасности всей конструкции.
  4. Композитная арматура широко используется в строительстве причалов и доков, при укреплении и заграждении прибрежных зон и т.п. Причина тому – устойчивость пластиковой арматуры к коррозийным повреждениям, повышенной влажности и другим агрессивным химическим средам.
  5. С использованием пластиковой арматуры осуществляют строительство промышленных и гражданских сооружений, выполняют слоистую кладку кирпичных зданий, применяют при креплении наружной теплоизоляции, как гибкие связи в трехслойных стенах здания, при обустройстве несъемной опалубки, для создания сейсмопоясов зданий.
  6. Стеклопластиковая арматура незаменима при строительстве коммуникационных каналов для прокладки трубопроводов, мелиорации, водоотведения и т.д.
  7. Арматура из композитных материалов применяется также при производстве заборных плит, тротуарной плитки, железнодорожных шпал, бордюров, столбиков и т.д. 

Композитная стеклопластиковая арматура — контроль диаметра D-10 ГОСТ. ТОЧНО В ДЕСЯТКУ! СтеклоПласт.

  • ‹ Предыдущая статья
  • Следующая статья ›

Вы можете оформить заказ или обсудить условия сотрудничества по телефону

8 (800) 222-72-54

Polymer Composites Часть 3: Обычное армирование, используемое в композитах

В этом вводном посте будут представлены общие армирующие материалы для композитов. Это послужит основой для будущих дискуссий по препрегам, ламинатам и широкому спектру композитов, армированных волокном. Выбор армирования является критическим фактором при проектировании или выборе композитных материалов, поскольку во многих случаях свойства композита определяются армированием. Усиления обычно неизотропны (т. е. имеют направленность), что приводит к свойствам, которые могут различаться в направлениях X, Y и Z. Например, однонаправленный волокнистый композит может иметь очень высокую прочность в направлении волокна из-за того, что большая часть нагрузки приходится на волокно, и низкую прочность в поперечном направлении из-за нагрузки, которую несет полимерная матрица. Композиты спроектированы таким образом, что большая часть нагрузки приходится на арматуру, что обеспечивает высокое соотношение прочности к весу. Химическая природа армирования, а также форма армирования являются важными параметрами конструкции композита. В следующих двух разделах будут обсуждаться типы армирования и формы армирования.

Типы армирования

  • Стекловолокно
  • Углеродные или графитовые арамидные (кевларовые) волокна
  • Волокна из сверхвысокомолекулярного полиэтилена (СВМПЭ)
  • Экзотические волокна (бор)
  • Наполнители в виде частиц (керамические наполнители (карбонат кальция, пирогенный кремнезем), металлические наполнители)

На Рисунке 1 показана кривая напряжения-деформации для некоторых типичных волокон, используемых в композитах.

Рисунок 1. Напряжение растяжения в зависимости от деформации растяжения для различных армирующих материалов, обычно используемых в композитах (1)

Наиболее распространенным типом композитной арматуры является Е-стекло. Судя по данным напряжения-деформации, E-стекло имеет самый низкий модуль, но имеет относительно хорошую прочность на растяжение. Е-стекло также является самым недорогим стеклянным волокном. E-стекло обычно доступно во многих формах (см. Ниже). S-стекло обладает более высоким модулем упругости и прочностью на растяжение, но имеет более высокую стоимость по сравнению с Е-стеклом. Двигаясь влево на рисунке 1, можно увидеть, что Kevlar 49 имеет более высокий модуль и прочность на растяжение по сравнению со стеклянными волокнами. Углеродные волокна имеют самые высокие модули, а высокопрочные углеродные волокна имеют примерно такую ​​же прочность на растяжение, как Е-стекло, но со значительно более высоким модулем. Обратите внимание, что для высокомодульного углеродного волокна прочность на растяжение снижается, поэтому это волокно будет использоваться там, где модуль и жесткость будут более важными критериями проектирования. Таблица 2.1 в ссылке 1 дает хороший обзор свойств материалов (модуль растяжения, предел прочности при растяжении, предел прочности при растяжении, КТР и коэффициент Пуассона) для широкого спектра коммерческих армирующих волокон.

Общие формы армирования:

  • Непрерывные жгуты (однонаправленные)
  • Ткани и плетеные рукава (двунаправленные)
  • Непрерывные рубленые волокна (дискретные волокна и волокнистые маты)
  • Наполнители в виде частиц

На следующем рисунке схематично показаны различные формы армирования и то, как они используются в многослойной укладке в готовом композите.

Рисунок 2. Основные строительные блоки армированных волокном композитов (1)

После выбора типа волокна (например, стекло, углерод, кевлар) в зависимости от применения выбирается форма. Однонаправленные волокна могут выдерживать высокие нагрузки при использовании, но обычно их необходимо накладывать слоями в укладке для достижения желаемых свойств. Как видно на ламинате в левом нижнем углу рисунка 2, несколько однонаправленных слоев уложены друг на друга по координатам 0 o , 90 o и 45 o (0, 90, 45, 45, 45, 45, 45, 90,0) в симметричной раскладке. Преимущество тканых тканей заключается в том, что геометрия переплетения может быть адаптирована для придания требуемых свойств в направлениях X и Y. Тканые ткани имеют разные типы переплетения (полотняное/квадратное, саржевое, атласное) и могут иметь различное количество пряжи в направлениях X (основа) и Y (уток/наполнитель). Например, стеклоткани сатинового переплетения обладают хорошей драпируемостью (для формирования сложных криволинейных форм) и малой извитостью. Извитость представляет собой угол между пересекающимися волокнами, а более низкая извитость обеспечивает улучшенные механические свойства, поскольку более прямые волокна могут выдерживать более высокие нагрузки.

Композиты, изготовленные с использованием компаундов для объемного формования (BMC) и компаундов для формования листов (SMC), изготавливаются из рубленого стекловолокна. BMC обычно содержат беспорядочно ориентированные короткие нарезанные волокна E-стекла. Материалы SMC также изготавливаются с использованием случайно ориентированных рубленых волокон E-стекла. Как показано в правом нижнем углу рисунка 2, комбинация наружных слоев с однонаправленными волокнами может сочетаться с внутренними слоями, содержащими однонаправленные прерывистые (рубленые) волокна, для обеспечения требуемых механических свойств при заданной стоимости.

В следующих нескольких сообщениях мы углубимся в матричные смолы, используемые в типичных композитах. Композиты

Доступен ряд армирующих волокон, наиболее распространенными из которых являются стеклянные и углеродные волокна. Эти волокна ориентированы либо в одном направлении (UD), либо поперек изготавливаемого композита.

Механические свойства композита в значительной степени определяются выбранным армированием, ориентацией этих волокон и общим содержанием используемых волокон (по отношению к матрице).

Армирующие волокна могут быть в виде ровинга или жгута (единая непрерывная прядь волокон), в матах и ​​в однонаправленных или многоосных тканях.

Углеродное или графитовое волокно

Сегодня углеродное волокно широко используется для снижения веса при сохранении требований к прочности и жесткости.

Exel использует ряд углеродных волокон в своем производстве. К ним относятся высокопрочные (HS), высокомодульные (HM), углеродные волокна типа PAN и сверхвысокомодульные (UHM) углеродные волокна пекового типа.

Наши изделия из углеродного волокна обычно имеют следующие преимущества:

  • Легкий (на 80 % легче стали и на 45 % легче алюминия)
  • Чрезвычайно прочный (UTS до 3000 МПа), высокая удельная прочность
  • Чрезвычайно жесткий (E от 80 до 400+ ГПа), высокая удельная жесткость 
  • Очень низкий коэффициент теплового расширения
  • Низкие эксплуатационные расходы 
  • Всепогодный
  • Низкое водопоглощение
  • Хорошие свойства усталости и ползучести
  • Демпфирование высоких вибраций 

Например, наши профили из пултрузионного углеродного волокна намного прочнее стали, легче алюминия и могут быть жестче стали (диапазон жесткости 100–400+ ГПа).

Типичные свойства углеродных волокон:

Тип   Плотность   Прочность на растяжение   Модуль упругости при растяжении  
   [кг/дм3]  [ГПа] [ГПа]
ГС1   1,75  3,31  228 
ГС2   1,80  5,0  248 
ИМ   1,74  4,50  296 
HM1   1,81  2,41  393 
HM2   1,96 1,52  483 
УХМ   2,15  2,24 724 

Стекловолокно

Стекловолокно – наиболее широко используемый армирующий материал в пултрузионной и намоточной индустрии. Стекловолокно используется в качестве армирующего наполнителя для многих полимерных изделий; полученный в результате композитный материал, известный как армированный волокном полимер (FRP) или армированный стекловолокном пластик (GRP), обычно называют «стекловолокном». Стекловолокно образуется, когда тонкие нити стекла на основе диоксида кремния или стекла с другим составом экструдируются во множество волокон малого диаметра, подходящих для текстильной обработки.

Стекловолокно обладает хорошими свойствами при растяжении, сжатии и ударе. Мы считаем стекловолокно материалом с высокими эксплуатационными характеристиками.

   Удельный вес   Прочность на растяжение   Модуль упругости при растяжении   Коэффициент теплового расширения  
      [МПа] [ГПа] 10-6/К
Е-стекло   2,58 3 450  72,5  5,0 
ECR-стекло   2,62 3 625  72,5  5,0 
S-стекло   2,48 4 590  86,0  5,6

 

Типичные свойства профилей и труб из стеклопластика (GRP) 

  • Малый вес (на 75 % легче стали и на 30 % легче алюминия) 
  • Очень хорошая удельная прочность
  • Очень хорошая удельная жесткость
  • Низкий коэффициент теплового расширения
  • Теплоизоляция
  • Немагнитный
  • Хорошая химическая стойкость
  • Низкие эксплуатационные расходы 
  • Всепогодный
  • Низкое водопоглощение (высокое содержание клетчатки)
  • Экономично 

Exel использует стекловолокно в различных формах:

  • Ровинг
  • Плетёная ровница
  • Коврики
  • В комбинациях ровингов, матов и тканых ровингов.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *