Где можно использовать композитную арматуру: Область применения композитной арматуры

Содержание

Применение композитной арматуры в строительстве


Композитная (стеклопластиковая) арматура

Пластик да нитки

Изобретение композитной арматуры


Знатоки строительного дела относят к 60-м годам прошлого столетия. В этот период в США и в Советском Союзе были начаты активные исследования ее свойств.


Однако, несмотря на достаточно солидный возраст, данный материал до сих пор не знаком большинству застройщиков. Восполнить пробел знаний о стеклопластиковой арматуре, ее свойствах, во всех достоинствах и недостатках вам поможет разобраться МодульСтрой.


Попутно отметим, что материал этот весьма спорный. Производители хвалят его на все лады, а строители-практики относятся с недоверием. Простые граждане смотрят на тех и на других, не зная кому верить.


Что такое композитная арматура, как она производится и где применяется?


Коротко структуру композитной арматуры можно охарактеризовать как «волокно в пластике». Ее основа – стойкие к разрыву нити из углерода, стекла или базальта. Жесткость композитному стержню придает эпоксидная смола, обволакивающая волокна.


Для лучшего сцепления с бетоном на прутья наматывается тонкий шнур. Он сделан из того же самого материала, что и основной стержень. Шнур создает винтовой рельеф, как у стальной. Твердение эпоксидной смолы происходит в сушильной камере. На выходе из нее композитную арматуру немного вытягивают и нарезают. Некоторые производители до момента твердения полимера обсыпают пластиковые стержни песком для улучшения сцепления с бетоном гладких участков.



Область применения стеклопластиковой арматуры нельзя назвать очень широкой. Ее используют в качестве гибких связей между облицовкой фасада и несущей стеной, а также укладывают в дорожные плиты и опалубку резервуаров. В каркасах, усиливающих ленточные фундаменты и бетонные полы, пластиковую арматуру применяют не так часто.


Ставить композитные стержни в плиты перекрытия, перемычки и другие конструкции, работающие на растяжение, не рекомендуется. Причина – повышенная гибкость данного материала.

Физические свойства композитной арматуры


Модуль упругости у полимерного композита существенно ниже, чем у стали (от 60 до 130 против 200 ГПа). Это значит, что там, где металл вступает в работу, предохраняя бетон от образования трещин, пластик еще продолжает сгибаться. Прочность на разрыв у стеклопластикового стержня в 2,5 раза выше, чем у стального.


Наименее прочная, но самая дешевая — арматура из стекловолокна и базальтовый композит. Самый надежный и вместе с тем самый дорогой материал делают на основе углеродного волокна.


К прочностным свойствам материала мы еще вернемся, когда будем сравнивать его с металлом.

А пока рассмотрим другие характеристики данного материала:

  • К положительным качествам композита относится его химическая инертность. Он не боится коррозии и воздействия агрессивных веществ (щелочной среды бетона, морской воды, дорожных химреагентов и кислот).
  • Вес пластиковой арматуры в 3-4 раза меньше, чем стальной.
  • Низкая теплопроводность материала улучшает энергосберегающие характеристики конструкции (нет мостиков холода).
  • Композитная арматура не проводит электричества. В конструкциях, где она используется, не возникает коротких замыканий электропроводки и блуждающих токов.
  • Композитный пластик магнитноинертен и радиопрозрачен. Это позволяет использовать его в строительстве сооружений, где должен быть исключен фактор экранирования электромагнитных волн.


Стеклопластиковый стержень под 90 градусов на стройке не согнешь.

Недостатки композитной арматуры:

  • Невозможность гибки с малым радиусом в условиях стройки. Гнутый стержень нужно заранее заказывать.
  • Невозможность сваривать каркас (минус относительный, поскольку даже для стальной арматуры лучший способ соединения – вязка, а не сварка).
  • Низкая термостойкость. При сильном нагреве и пожаре бетонная конструкция, армированная композитными стержнями, разрушается. Стекловолокно не боится высокой температуры, но связующий ее пластик теряет прочность при нагреве выше +200 С.
  • Старение. Общий минус всех полимеров. Неметаллическая арматура не исключение. Ее производители завышают срок эксплуатации до 80-100 лет.


Вязка пластиковыми хомутами или стальной проволокой – единственный возможный метод сборки каркаса.

Какая арматура лучше металлическая или стеклопластиковая?


Наше маленькое исследование наглядно иллюстрирует таблица реальной, а не теоретической равнопрочной замены стальной арматуры на композитную. Ей можно пользоваться при выборе и покупке.



Просмотрев данную таблицу, нетрудно заметить, что пластика для равноценной замены металла требуется не меньше, а больше металла. Только самый дорогой углеродоволоконный материал (АУК) превосходит сталь равного с ним диаметра.

Ассортимент и цена композитной арматуры


Самая востребованная на стройке – арматура из стеклопластикового композита. Ее сортамент и средние цены вы можете посмотреть в нашем прайс-листе на официальном сайте компании,или связаться с нашими операторами по телефону +7 (4852) 90-78-78, если у вас возникли вопросы.

Плюсы и минусы строительной композитной арматуры

Основные плюсы композитной арматуры заключаются в её малом весе, высокой прочности на разрыв, высокой химической и антикоррозионной устойчивости, низкой теплопроводности, малом коэффициенте теплового расширения и в том, что она является диэлектриком. Высокая прочность на разрыв, значительно превышающая аналогичный параметр у стальной арматуры при равном диаметре, позволяет применять композитную арматуру меньшего диаметра взамен стальной.

Вы даже не представляете себе, насколько выгодным является применение стеклопластиковой арматуры! Экономический выигрыш от её применения складывается из целого ряда факторов, а отнюдь не из одной только разницы в стоимости между погонным метром стальной и композитной арматуры.

Не поленитесь посмотреть полное описание факторов, из которых складывается ваша экономия денежных средств, времени, человеко-часов, электричества, расходных материалов и т.д. в статье «ЭКОНОМИЯ ОТ ИСПОЛЬЗОВАНИЯ КОМПОЗИТНОЙ АРМАТУРЫ»

Но, нужно помнить, что у композитной арматуры есть и существенные минусы. Большинство Российских производителей не афишируют эти минусы, хотя любой инженер строитель может заметить их самостоятельно. Основными минусами любой композитной арматуры являются следующие:

  • модуль упругости композитной арматуры почти в 4 раза ниже, чем у стальной даже при равном диаметре (другими словами она легко изгибается). По этой причине её можно применять в фундаментах, дорожных плитах и т.д., но применение в перекрытиях требует дополнительных расчетов;
  • при нагреве до температуры в 600 °С, компаунд, связывающий волокна арматуры, размягчается настолько, что арматура полностью теряет свою упругость. Для увеличения устойчивости конструкции к огню в случае пожара – требуется предпринимать дополнительные меры по теплозащите конструкций, в которых используется композитная арматура;
  • композитную арматуру, в отличие от стальной, – невозможно сваривать электросваркой. Решение – установка на концы арматурных стержней стальных трубок (в заводских условиях) к которым уже можно будет применять электросварку;
  • такой арматуре невозможно придать изгиб непосредственно на строительной площадке. Решение – изготовление арматурных стержней требуемой формы ещё на производстве по чертежам заказчика;

Подведем итог

Несмотря на то, что зарубежом такая арматура успешно применяется уже несколько десятилетий, все виды композитной арматуры являются довольно новым материалом на строительном рынке России. Её применение имеет большие перспективы. На сегодняшний день её можно смело применять в малоэтажном строительстве, в фундаментах различных типов, в дорожных плитах и прочих подобных конструкциях. Однако для применения её в многоэтажном строительстве, в конструкциях мостов и т.д. – требуется учитывать её физико-химические особенности ещё на этапе подготовки к проектированию.

Любопытный факт – арматура в бухтах!

Основным применением арматуры в малоэтажном строительстве является использование её для армирования фундаментов. При этом, чаще всего используется стальная арматура класса А3, диаметрами 8, 10, 12 мм. Вес 1000 метров погонных стальной арматуры составляет 400 кг для Ø8мм, 620 кг для Ø10мм, 890 кг для Ø12мм. Теоретически Вы можете приобрести стальную арматуру в бухтах (если найдете), при этом, в последствии, Вам понадобится специальное устройство для повторного выравнивания такой арматуры. Сможете ли Вы перевезти 1000 метров такой арматуры на своем легковом автомобиле к месту строительства, чтобы сократить расходы на доставку? А теперь представьте, что указанную арматуру можно заменить композитной меньшего диаметра, а именно 4, 6, 8 мм вместо 8, 10, 12 мм. соответственно. Вес 1000 метров погонных композитной арматуры составляет 20 кг для Ø4мм, 36 кг для Ø6мм, 80 кг для Ø8мм. Вдобавок, несколько уменьшился её объём. Такую арматуру можно приобрести в бухтах, при этом, внешний диаметр бухты составляет чуть больше 1м. Кроме того, при разматывании такой бухты, композитная арматура не требует выпрямления, так как практически не имеет остаточной деформации. Могли ли Вы себе представить, что сможете перевезти арматуру, требующуюся для строительства загородного дома или дачи, в багажнике собственного легкового автомобиля? И Вам даже не понадобится помощь при загрузке и разгрузке!


Поделиться ссылкой


МеткиАрматура в бухтах Композитная арматура Композитная арматура плюсы и минусы Композитная стеклопластиковая арматура Минусы композитной арматуры Минусы стеклопластиковой арматуры Плюсы и минусы стеклопластиковой арматуры Стеклопластиковая арматура Стеклопластиковая арматура в бухтах. Фото Стеклопластиковая композитная арматура

Предыдущий Композитная арматура для армирования промышленных полов площадью 7000 кв. м.

Следующий Стеклопластиковая арматура для завода в Аннолово (Ленинградская область)


Проверьте также



Двухэтажный дом из пенобетона в поселке «Ближняя пристань» на фундаменте, армированном композитной арматурой. Строительство дома …


С одной стороны, если говорить просто о всех возможных вариантах, то композитную стеклопластиковую арматуру можно …

Наука и технология композитных материалов

В таком развитом обществе, как наше, мы все зависим от композитных материалов в некоторых аспектах нашей жизни.
Стекловолокно

ГЛОССАРИЙ
Стекловолокно Композитный материал, изготовленный из тонких стеклянных волокон, сплетенных в ткань, а затем соединенных синтетическим пластиком или смолой.

был разработан в конце 1940-х годов и стал первым современным композитом. Он по-прежнему остается самым распространенным, составляя около 65 процентов всех производимых сегодня композитов. Он используется для изготовления корпусов лодок, досок для серфинга, спортивных товаров, облицовки бассейнов, строительных панелей и кузовов автомобилей. Вы вполне можете использовать что-то из стекловолокна, не подозревая об этом.

Лодки, доски для серфинга, автомобили и многое другое: стекловолокно и другие композитные материалы окружают нас. Источник изображения: sobri/Flickr.

Что делает материал композитным

Композитные материалы образуются путем объединения двух или более материалов, обладающих совершенно разными свойствами. Различные материалы работают вместе, чтобы придать композиту уникальные свойства, но внутри композита вы можете легко отличить разные материалы — они не растворяются и не смешиваются друг с другом.

Композиты существуют в природе. Кусок дерева представляет собой композит, состоящий из длинных волокон целлюлозы (очень сложной формы крахмала), скрепленных гораздо более слабым веществом, называемым лигнином. Целлюлоза также содержится в хлопке и льне, но именно связывающая способность лигнина делает кусок древесины намного прочнее пучка хлопковых волокон.

Это не новая идея

Человечество использует композитные материалы тысячи лет. Возьмем, к примеру, глиняные кирпичи. Если вы попытаетесь согнуть лепешку из засохшей грязи, она легко сломается, но будет прочной, если вы попытаетесь раздавить или сжать ее. С другой стороны, кусок соломы обладает большой силой, когда вы пытаетесь его растянуть, но почти не имеет силы, когда вы его смываете. Когда вы смешиваете глину и солому в блоке, свойства двух материалов также объединяются, и вы получаете кирпич, который устойчив как к сжатию, так и к разрыву или изгибу. Говоря более технически, у него есть как хорошие
прочность на сжатие

ГЛОССАРИЙ
прочность на сжатие Максимальное напряжение, которое может выдержать материал, когда он подвергается нагрузке, которая сжимает его.

и хорошо
предел прочности

ГЛОССАРИЙ
Прочность на растяжение Максимальное напряжение, которое выдержит материал, когда он подвергается растягивающей нагрузке.

.

Мужчина восстанавливает древнюю цитадель из сырцового кирпича в Иране после ее повреждения в результате землетрясения. Глиняные кирпичи — это те же материалы, которые использовались для его строительства около 2500 лет назад. Источник изображения: OXLAEY.com/Flickr.

Еще одним известным композитом является бетон. Здесь заполнитель (мелкие камни или гравий) связан цементом. Бетон обладает хорошей прочностью при сжатии, и его можно сделать более прочным при растяжении, добавив в композит металлические стержни, проволоку, сетку или тросы (таким образом создавая железобетон).

Композиты были изготовлены из формы углерода, называемой графеном, в сочетании с металлической медью, в результате чего получается материал, в 500 раз прочнее, чем медь сама по себе. Точно так же композит графена и никеля имеет прочность, превышающую прочность никеля более чем в 180 раз.

Что касается стекловолокна, то оно изготовлено из
пластик

ГЛОССАРИЙ
пластик Твердый материал, состоящий из органических полимеров.

армированный нитями или стеклянными волокнами. Эти нити можно либо связать вместе и сплести в мат, либо иногда нарезать на короткие отрезки, которые произвольно ориентированы в пластиковой матрице.

Больше, чем просто прочность

В настоящее время многие композиты производятся не только для повышения прочности или других механических свойств, но и для других целей. Многие композиты предназначены для того, чтобы быть хорошими проводниками или изоляторами тепла или обладать определенными магнитными свойствами; свойства, которые являются очень специфическими и специализированными, но также очень важными и полезными. Эти композиты используются в огромном количестве электрических устройств, включая транзисторы, солнечные элементы, датчики, детекторы, диоды и лазеры, а также для изготовления антикоррозионных и антистатических покрытий поверхностей.

Композиты, изготовленные из оксидов металлов, также могут обладать особыми электрическими свойствами и используются для производства кремниевых чипов, которые могут быть меньше и более плотно упакованы в компьютер. Это увеличивает объем памяти и скорость компьютера. Оксидные композиты также используются для создания высокотемпературных сверхпроводящих свойств, которые теперь используются в электрических кабелях.

Изготовление композита

Большинство композитов состоит всего из двух материалов. Один материал (матрица или связующее) окружает и связывает вместе группу волокон или фрагментов гораздо более прочного материала (армирования). В случае сырцовых кирпичей две роли выполняют глина и солома; в бетоне цементом и заполнителем; в куске дерева, целлюлозой и лигнином. В стекловолокне армирование обеспечивается тонкими нитями или волокнами стекла, часто вплетенными в своего рода ткань, а матрица представляет собой пластик.

Примеры различных форм армирования стекла для использования при создании стеклопластика. Источник изображения: Cjp24/Викисклад.

Стеклянные нити в стекловолокне очень прочны при растяжении, но они также хрупкие и ломаются при резком изгибе. Матрица не только удерживает волокна вместе, но и защищает их от повреждений, разделяя любые
стресс

ГЛОССАРИЙ
стресс Сила на единицу площади. Измеряется в тех же единицах, что и давление, а именно в паскалях (Па). Материалы обычно имеют прочность в диапазоне мегапаскалей (МПа) (1 МПа = 1 000 000 Па).

среди них. Матрица достаточно мягкая, чтобы ее можно было формировать с помощью инструментов, и ее можно смягчить подходящими растворителями, чтобы можно было произвести ремонт. Любая деформация листа стеклопластика обязательно растягивает часть стеклянных волокон, а они способны этому противостоять, поэтому даже тонкий лист очень прочен. Он также довольно легкий, что является преимуществом во многих приложениях.

За последние десятилетия было разработано много новых композитов, некоторые из которых обладают очень ценными свойствами. Тщательно выбирая армирование, матрицу и производственный процесс, который объединяет их, инженеры могут адаптировать свойства в соответствии с конкретными требованиями. Они могут, например, сделать композитный лист очень прочным в одном направлении, выровняв таким образом волокна, но более слабым в другом направлении, где прочность не так важна. Они также могут выбрать такие свойства, как устойчивость к теплу, химическим веществам и атмосферным воздействиям, выбрав соответствующий матричный материал.

Выбор материалов для матрицы

Для матрицы во многих современных композитах используются термореактивные или термопластичные пластики (также называемые смолами). (Использование пластика в матрице объясняет название «армированный пластик», обычно данное композитам). Пластмассы
полимеры

ГЛОССАРИЙ
полимеры Крупные молекулы, состоящие из множества звеньев (мономеров), связанных друг с другом в цепь. Существуют природные полимеры (такие как крахмал и ДНК) и синтетические полимеры (такие как нейлон и силикон).

которые скрепляют арматуру и помогают определить физические свойства конечного продукта.

Термореактивные пластмассы жидкие при приготовлении, но затвердевают и становятся жесткими (т.е. отверждаются) при нагревании. Процесс схватывания необратим, поэтому эти материалы не становятся мягкими при высоких температурах. Эти пластмассы также устойчивы к износу и воздействию химических веществ, что делает их очень прочными даже в экстремальных условиях.

Термопластические пластмассы, как следует из названия, являются твердыми при низких температурах, но размягчаются при нагревании. Хотя они используются реже, чем термореактивные пластмассы, у них есть некоторые преимущества, такие как более высокая вязкость разрушения, длительный срок хранения сырья, способность к переработке и более чистое и безопасное рабочее место, поскольку для процесса отверждения не требуются органические растворители.

Керамика, углерод и металлы используются в качестве матрицы для некоторых узкоспециализированных целей. Например, керамика используется, когда материал будет подвергаться воздействию высоких температур (например, теплообменники), а углерод используется для продуктов, подверженных трению и износу (например, подшипники и шестерни).

Электронно-микроскопическое изображение в искусственном цвете композита с магниевой матрицей, армированного титана-алюминиевым карбидом. Источник изображения: микроскопия ZEISS / Flickr.

Выбор материалов для армирования

Хотя стекловолокно является наиболее распространенным армирующим материалом, во многих передовых композитах теперь используются тонкие волокна из чистого углерода. Можно использовать два основных типа углерода — графит и углеродные нанотрубки. Оба они представляют собой чистый углерод, но атомы углерода расположены в разных кристаллических конфигурациях. Графит — очень мягкое вещество (используется в «графитовых» карандашах) и состоит из листов атомов углерода, расположенных в виде шестиугольников. Связи, скрепляющие шестиугольники вместе, очень прочные, но связи, скрепляющие листы шестиугольников, довольно слабые, что и делает графит мягким. Углеродные нанотрубки изготавливаются путем скручивания одного листа графита (известного как графен) в трубку. Получается чрезвычайно прочная конструкция. Также возможно иметь трубки, состоящие из нескольких цилиндров — трубки внутри трубок.

Композиты из углеродного волокна легче и намного прочнее стекловолокна, но и дороже. Из этих двух графитовые волокна дешевле и проще в производстве, чем углеродные нанотрубки. Они используются в конструкциях самолетов и высокоэффективном спортивном оборудовании, таком как клюшки для гольфа, теннисные ракетки и гребные лодки, и все чаще используются вместо металлов для ремонта или замены поврежденных костей.

Нити из бора еще прочнее (и дороже), чем углеродные волокна. Нанотрубки из нитрида бора имеют дополнительное преимущество, заключающееся в том, что они намного более устойчивы к теплу, чем углеродные волокна. Они также обладают пьезоэлектрическими свойствами, что означает, что они могут генерировать электричество при воздействии на них физического давления, такого как скручивание или растяжение.

Полимеры также могут использоваться в качестве армирующего материала в композитах. Например, кевлар, изначально разработанный для замены стали в радиальных шинах, но наиболее известный своим использованием в пуленепробиваемых жилетах и ​​шлемах, представляет собой полимерное волокно, обладающее чрезвычайной прочностью и повышающее ударную вязкость композита. Применяется в качестве армирования в композитных изделиях, требующих легкой и надежной конструкции (например, конструкционные детали корпуса самолета). Еще более прочным, чем кевлар, является вещество, изготовленное из комбинации графена и углеродных нанотрубок.

Источник: NASA Goddard/YouTube. Посмотреть детали видео и расшифровку.

Выбор производственного процесса

Изготовление объекта из композиционного материала обычно включает в себя ту или иную форму. Армирующий материал сначала помещается в форму, а затем напыляется или закачивается полужидкий матричный материал для формирования объекта. Можно приложить давление, чтобы вытеснить любые пузырьки воздуха, а затем форму нагреть, чтобы матрица затвердела.

Процесс формования часто выполняется вручную, но автоматическая обработка на машинах становится все более распространенной. Один из этих методов называется
пултрузия

ГЛОССАРИЙ
пултрузия Непрерывный процесс формования, при котором длинные армирующие пряди механически выравниваются для композитного материала, а затем пропускают их через ванну с термореактивной смолой. Затем нити с покрытием собираются с помощью механической направляющей перед процессом отверждения.

(термин, образованный от слов «тянуть» и «экструзия»). Этот процесс идеально подходит для изготовления прямых изделий с постоянным поперечным сечением, таких как мостовые балки.

Во многих тонких конструкциях сложной формы, таких как изогнутые панели, композитная структура строится путем наложения листов тканого волокнистого армирования, пропитанных пластиковым матричным материалом, на базовую форму соответствующей формы. Когда панель изготовлена ​​до необходимой толщины, матричный материал отверждается.

Сэндвич-композиты

Многие новые типы композитов производятся не методом матрицы и армирования, а путем укладки нескольких слоев материала. Структура многих композитов (например, используемых в панелях крыльев и корпусов самолетов) состоит из сот из пластика, зажатых между двумя обшивками из композитного материала, армированного углеродным волокном.

Сэндвич-структура из сотового композита от НАСА. Источник изображения: НАСА/Викисклад.

Эти сэндвич-композиты сочетают в себе высокую прочность и особенно жесткость на изгиб с малым весом. Другие методы включают простое наложение нескольких чередующихся слоев различных веществ (например, графена и металла) для получения композита.

Зачем использовать композиты?

Самым большим преимуществом композитных материалов является прочность и жесткость в сочетании с легкостью. Выбирая подходящую комбинацию армирующего и матричного материала, производители могут добиться свойств, точно соответствующих требованиям к конкретной конструкции для конкретной цели.

  • Композиты в Австралии

    Австралия, как и все развитые страны, проявляет большой интерес к композитным материалам, которые многие считают «материалами будущего». Основная задача состоит в том, чтобы снизить затраты, чтобы композиты можно было использовать в продуктах и ​​приложениях, которые в настоящее время не оправдывают затрат. В то же время исследователи хотят улучшить характеристики композитов, например, сделать их более устойчивыми к ударам.

    Один из новых методов включает «текстильные композиты». Вместо того, чтобы укладывать армирующие волокна по отдельности, что медленно и дорого, их можно связать или сплести вместе, чтобы сделать своего рода ткань. Это может быть даже трехмерным, а не плоским. Пространства между текстильными волокнами и вокруг них затем заполняются матричным материалом (например, смолой) для изготовления изделия.

    Этот процесс можно легко выполнить с помощью машин, а не вручную, что делает его быстрее и дешевле. Соединение всех волокон вместе также означает, что композит с меньшей вероятностью будет поврежден при ударе.

    В связи со снижением затрат другие варианты использования композитов становятся все более привлекательными. При изготовлении корпусов и надстроек лодок из композитов используется их устойчивость к коррозии. У минных охотников ВМС Австралии композитный корпус, поскольку магнитный эффект стального корпуса будет мешать обнаружению мин.

    Также в разработке находятся вагоны для поездов, трамваев и других «движителей людей», изготовленных из композитов, а не из стали или алюминия. Здесь привлекательность заключается в легкости композитов, поскольку в этом случае транспортные средства потребляют меньше энергии. По той же причине мы будем видеть все больше и больше композитов в автомобилях в будущем.

Ярким примером является современная авиация, как военная, так и гражданская. Без композитов было бы гораздо менее эффективно. Фактически, потребность этой отрасли в легких и прочных материалах была главной движущей силой разработки композитов. В настоящее время часто можно встретить секции крыла и хвостового оперения, пропеллеры и лопасти несущего винта, изготовленные из передовых композитов, а также большую часть внутренней конструкции и фурнитуры. Планеры некоторых небольших самолетов полностью сделаны из композитных материалов, как и крылья, хвостовое оперение и панели корпуса больших коммерческих самолетов.

Размышляя о самолетах, стоит помнить, что композиты менее склонны к полному разрушению под нагрузкой, чем металлы (например, алюминий). Небольшая трещина в куске металла может очень быстро распространиться с очень серьезными последствиями (особенно в случае с самолетом). Волокна в композите блокируют расширение любой небольшой трещины и распределяют напряжение вокруг.

Подходящие композиты также хорошо противостоят нагреву и коррозии. Это делает их идеальными для использования в продуктах, которые подвергаются воздействию экстремальных условий, таких как лодки, оборудование для обработки химикатов и космические корабли. В целом композитные материалы очень прочны.

Еще одним преимуществом композитных материалов является то, что они обеспечивают гибкость конструкции. Композитным материалам можно придавать сложные формы, что очень удобно при производстве чего-то вроде доски для серфинга или корпуса лодки.

Кроме того, большая работа в настоящее время направлена ​​на разработку композитных материалов, изготовленных из отходов, таких как сельскохозяйственные отходы, строительные материалы или пластиковые контейнеры для напитков.

Недостатком композитов обычно является их стоимость. Хотя производственные процессы часто более эффективны при использовании композитов, сырье стоит дорого. Композиты никогда полностью не заменят такие традиционные материалы, как сталь, но во многих случаях это именно то, что нам нужно. И, несомненно, по мере развития технологии будут найдены новые применения. Мы еще не видели всего, на что способны композиты.

Современная авиация стала основной движущей силой развития композитов. Источник изображения: Пол Нелхамс / Flickr. Руководство

FCA/Stellantis для композитного армирования Руководство

FCA/Stellantis для композитного армирования

    Следите за нашими обновлениями на @Ask_ICAR.


    Композитное усиление центральной стойки Chrysler Town And Country 2016 года

    Строгие рейтинги краш-тестов и стандарты экономии топлива заставляют OEM-производителей творчески подходить к усилению автомобилей, сохраняя или даже уменьшая общий вес. Различные материалы используются наряду с добавлением дополнительных подкреплений. Если вы ремонтировали автомобили FCA/Stellantis последних модельных годов, вы, возможно, заметили использование композитного усиления.

    Хотя эти композитные элементы жесткости могут показаться незначительными, в руководствах по ремонту FCA/Stellantis подчеркивается, что они обязательно должны быть заменены. Предупреждения можно найти в разделе «Информация о столкновении» ➤ «Стандартные процедуры» ➤ «Местоположения и процедуры разделения», в которых говорится: «Композитная арматура должна быть установлена ​​для соблюдения стандартов прочности компонентов». В руководстве также говорится: «Несоблюдение этих указаний может привести к серьезным или смертельным травмам».

    В зависимости от того, где используется арматура, применяются разные правила ее обслуживания и установки. Некоторые композитные арматуры можно заменять отдельно, а некоторые поставляются в виде сборки, требующей замены компонента, к которому они прикреплены. Для композитной арматуры, пригодной для эксплуатации или переустанавливаемой, для их крепления используется конструкционный клей. Если само армирование удалено или какой-либо компонент, который касается армирования, удален, композитное армирование необходимо снова прикрепить.

    В передней двери Ram 1500 (DT) 2019 года используется композитное усиление, которое само по себе не подлежит обслуживанию. В мануале написано: «Если композитное усиление передней двери повреждено, переднюю дверь необходимо заменить».

    Ищите эти усиления на многих автомобилях FCA/Stellantis. Общие области, в которых используется композитная арматура, включают, помимо прочего:

    • Двери
    • Передняя стойка
    • Средняя стойка
    • Рамка ветрового стекла
    • Пол салона
    • D-стойка
    • Рейлинг на крыше

    При работе с композитными элементами жесткости строго соблюдайте руководство по ремонту кузова конкретного автомобиля. Инструкции по их замене могут варьироваться от модели к модели.

    Для получения дополнительной информации FCA/Stellantis посетите следующие страницы:
    Информация OEM Alfa Romeo
    Информация OEM Chrysler
    Информация OEM Dodge
    Информация OEM Fiat
    OEM-информация Jeep
    RAM OEM-информация


    Связанные курсы I-CAR
    • Самый популярный
    • Самые последние
    • Архив

    Десять наиболее частых вопросов по транспортным средствам
    Hyundai Есть ли у Hyundai процедура разделения?
    Kia ​​ Имеется ли в Kia процедура разделения?
    Chevrolet Есть ли у Chevrolet предупреждение против разделения на секции, когда нет процедуры?
    BMW Может ли I-CAR выслать мне процедуры ремонта BMW?
    Honda Что Honda говорит о ремонте поврежденных жгутов проводов системы подушек безопасности?
    Hyundai Есть ли у Hyundai процедуры замены деталей?
    Mercedes-Benz Может ли I-CAR выслать мне процедуры ремонта Mercedes-Benz?
    Honda Что Honda говорит о выпрямлении передних нижних направляющих?
    Subaru Нужно ли заменять подушку безопасности переднего пассажира на Subaru, даже если подушка безопасности не сработала? Информация о ремонте, похоже, указывает на то, что так и должно быть.

    admin

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2024 Умный дом: система умный дом, автоматизация зданий, интеллектуальное здание, цифровой дом, домашняя автоматизация, интеллектуальный дом