Сульфатостойкий бетон: что это, обозначение, виды, гост, цена
Для начала вспомним, что такое бетон. Бетон – это искусственный каменный материал, состоящий из следующих компонентов:
- песок;
- щебень;
- цемент;
- добавки;
- вода.
Перемешивая эти компоненты получается бетонная смесь, которая при заполнении в формы застывает и через 28 суток образуется плотный искусственный камень, который и называется бетоном.
Надо отличать ещё и растворную смесь, когда ко всем компонентам бетонной смеси не добавляется щебень, но процесс твердения происходит по обычной схеме и также образуется искусственный камень, который назовём бетоном.
Основным скрепляющим компонентом является цемент и именно он называется вяжущим материалом.
При строительстве фундаментов, речных и морских молов, гидротехнических сооружений, мостовых свай, обсадных конструкций железобетонных колодцев в проектной документации может быть указано требование о применении сульфатостойкого бетона.
Содержание
- Опасность сульфатов для бетона
- Способы борьбы с сульфатами
- Как определяется сульфатостойкость
- Сульфатостойкий цемент
- Шлакопортландцемент
- Пуццолановый цемент
- Приготовление сульфатостойкого бетона своими руками
- Видео
- Коротко о главном
Опасность сульфатов для бетона
Сульфаты – соли серной кислоты (h3SO4), широко распространённые в природе и в избытке имеющиеся в морской воде, грунтовых водах и других минеральных источниках. Они способствуют развитию III типа коррозии бетона. Такой тип разрушения происходит при образовании в теле бетона — в порах и капиллярах малорастворимых солей. Такое образование приводит к давлению на бетонный камень и его разрушению. Сульфаты, попадая в бетон, взаимодействуют с продуктами гидратации цемента и образуют комплексные различные соли, самой опасной из которых является гидросульфоалюминат кальция (ГСАК).
Опасность ГСАКа заключается в том, что он, взаимодействуя с водой, присоединяет 30-32 её молекулы и расширяется в объёме и разрывает структуру камня. Это образование (ГСАК) возникает как результат реакции гидроалюминатов цементного камня с гипсом, который поступил в бетон в виде растворов или образовался от реакции сульфатов и гашёной извести Ca(OH)2.
Высокая концентрация двухвалентных анионов SO42- в воде и C3A (трёхкальциевый алюминат) в цементе, непременно будут приводить к образованию гидросульфоалюмината кальция.
Воды, с содержанием сульфатов, находятся везде и в этом заключается их опасность для бетонов.
Особенно высока концентрация сульфатов в морской воде, достигающая 2500-2700 мг/л.
Образующийся ГСАК расширяется и ломает структуру бетонного камня, потому что, связывая молекулы h3O, он увеличивается в объёме в 1.63 раза, а когда взаимодействует ещё и с C3A и Ca(OH)2, то увеличение объёма ещё больше – в 2.27 раза. Расширенный состав ГСАКа может вымываться водой и будут образовываться разрывы сплошности в теле бетона. Так происходит коррозия бетона III типа, когда продукты коррозии, иначе говоря, образование гидросульфоната кальция и гашёная известь вымываются водами, которые контактируют с конструкциями.
Способы борьбы с сульфатами
Для того чтобы противостоять вредному воздействию сульфатов из морской воде, природных водоёмов и грунтовых вод, в строительстве применяют следующие материалы:
- Сульфатостойкий портландцемент;
- Шлакопортландцемент;
- Пуццолановый цемент;
- Портландцемент с минеральными добавками.
Применение таких цементов при производстве бетонных смесей и растворов придаёт конечному продукту, т.е. бетонному камню, необходимые сульфатостойкие свойства. Важность этой темы определяется и существованием отдельного ГОСТ 56687 – 2015 Защита бетонных и железобетонных конструкций от коррозии. Методы определения сульфатостойкости бетона.
Как определяется сульфатостойкость
- Заливают 15 формочек 25х25х254 мм цементно-песчаным раствором.
- Через 24 часа извлекают образцы и помещают в воду на 27 суток.
- После выдерживания в воде отбирают 12 образцов и снова помещают 6 — в воду, а остальные 6 — в 5 % раствор сульфата натрия.
- В таком положении они находятся до 12 месяцев, причём контрольные образцы находятся в несменяемой дистиллированной воде, а испытуемые образцы – в растворе, который периодически меняют на свежий.
- Периодически их извлекают и осматривают, фиксируя дефекты – сколы, трещины, изгибы образцов.
Все результаты обрабатываются по сложным формулам и в конце концов сводят в таблицу:
Но в этой таблице всё только про цементы. Так вот, сульфатостойкость бетона определяется в каждом конкретном случае в зависимости от агрессивности среды, в которой он будет находиться, т. е. конкретные показатели содержания ионов SO42- в воде. Проектные требования по водонепроницаемости, которые имеют классы W 4 – W20. По этим данным подбирают марку цемента по ряду таблиц в Своде Правил 28.13330. 2012 (Защита строительных конструкций от коррозии), который может быть использован для приготовления бетонной смеси в том или ином проекте. Как вы понимаете, сульфотостойкость бетонов очень сложная тема и по-простому с ней не разобраться.
Сульфатостойкий цемент
Напомним, что такое цемент – это искусственный материал, который получают из магнезиальных и карбонатно-силикатных горных пород методом спекания в огромных печах обжига (до 180м). Полученный после обжига клинкер засыпают в шаровые мельницы с добавлением до 6 % гипса (CaSO4х2Н2О). Далее полученный порошок пневмотранспортом перекачивается в силосы. Так получается обычный портландцемент, названный в честь английского острова Портленд, на котором впервые он был получен в 1824 году.
Для того чтобы придать портландцементу сульфатостойкие свойства, ему на стадии производства задают определённый минералогический состав. В маркировке добавляются две буквы С, что означает сульфатостойкий. Таблица регулирования содержания минералов в клинкере взята из ГОСТа 22266 – 2013.
Из этой таблицы видно, что важно удерживать в норме трёхкальциевый алюминат, который и есть вредоносная составляющая при взаимодействии с сульфатами. Об этом мы говорили в начале статьи. Образование гидросульфоалюмината кальция (ГСАК) приводит к повреждениям бетонного камня от расширения при протекании реакции, а в последующем к вымыванию этого образования из тела бетона. Так протекает коррозия бетона III типа.
Марки сульфатостойкого цемента по прочности – В32.5, В42.5, В52.5.
Шлакопортландцемент
Это гидравлическое вяжущее, которое получается после совместного помола клинкера и высушенного гранулированного доменного шлака, добавляется ещё и гипс в пропорции, как при обычном цементе, то есть до 6%.
ГОСТ требует содержание доменного шлака в пропорциях к общей массе цемента от 20 до 60 %. Шлакопортландцемент подразделяется на обычный, быстротвердеющий и сульфатостойкий. Марки по прочности не отличаются от обычного сулфатостойкого портландцемента – В32.5, В42.5, В52.5. В таблице выше можно понять, что для шлакопортландцемента также важным показателем, который жёстко нормируется ГОСТом, является содержание по минералогическому составу трёхкальциевого алюмината не более 5%. Такое содержание этого минерала и обуславливает сульфатостойкость шлакопортландцемента.
Такой цемент универсален и широко применяется при строительстве крупных гидротехнических сооружений.
У него есть один недостаток – при гидратации цемента выделяется незначительное количество тепла, что ограничивает использование его в зимний период.
Поэтому его используют при производстве железобетонных конструкций, которые подвергаются тепловлажностной обработке, то есть пропариванию.
Одним из самых важных достоинств шлакопортландцемента является его дешевизна, что немаловажно при больших объёмах строительства.
Пуццолановый цемент
Это цементы, которые готовятся из обычных портландцементов и активных минеральных добавок. Активные минеральные добавки – это искусственные или природные вещества, в составе которых обязательно присутствует активный кремнезём, который содержится в пуццоланах.
Пуццолана – материал силикатного или алюмосиликатного состава и их комбинация, получается из туфа, пемзы, вулканического пепла. Название дано от итальянского города Пуццуоли. Если пуццолану залить водой, то ни в какую реакцию она вступать не будет, но в тонкоизмельчённом виде в присутствии воды взаимодействует с раствором гидроксида кальция Ca(OH)2, знакомая нам гашёная известь. Таким образом присутствие измельчённого реакциоспособного диоксида кремния (SiO2), который по массе составляет не менее 25% в пуццолановой добавке, приводит к прохождению реакции взаимодействия с гидратом окиси кальция.
Такая добавка не позволяет формироваться уже хорошо нам известному гидросульфоалюминату кальция, потому что активный кремнезём вступает в реакцию с водой и забирает её и гашёную известь. Таким образом пуццолановый цемент уберегает бетон от разрушающего воздействия пресных и сульфатных вод. Так выглядит природа противостояния сульфатной коррозии.
Приготовление сульфатостойкого бетона своими руками
Если у вас остро возникла необходимость залить ограждающую стену, которая будет находится под воздействием воды, например, у реки или озера, то вот вам рецепт.
Чтобы приготовить 1 м3 сульфатостойкого бетона (М300) своими руками необходимо иметь следующий набор материалов:
- сульфатостойкий портландцемент — 360 кг;
- речной песок — 850 кг;
- щебень гранитный — 1100 кг;
- вода — 190 л;
- при необходимости добавки 5–10 кг.
Видео
Коротко о главном
- Противостояние сульфатной агрессии морских, речных, сточных и грунтовых вод проводится двумя способами:
• применение сульфатостойкого портландцемента, шлакопортландцемента и пуццоланового цемента;
• применение модифицирующих добавок, которые улучшают качество бетонной или растворной смеси, повышая долговечность конечного продукта – железобетонных конструкций. Такие добавки могут быть гидрофобными, что в итоге придаёт бетону водоотталкивающие свойства и пластифицирующими, что позволяет при формовании изделий и конструкций снизить водоцементное отношение В/Ц и, как результат, повысить плотность бетонного камня. - Наиболее агрессивными солями, которые разрушающе воздействуют на бетон, будут сульфаты магния и натрия. Не зря испытания на сульфатостойкость цемента проводятся на 5 % растворе сульфата натрия.
- Основная опасность сульфатной коррозии заключается от реакции трёхкальциевого алюмината с сульфатами из окружающей среды и образованием гидросульфоалюмината кальция (ГСАК), который в порах и трещинах расширяется в объёме (на 227%) и создаёт давление на бетонный камень. Такое воздействие совместно с вымыванием водами этих образований приводит к коррозии бетона III типа.
- Сульфатостойкие цементы – это цементы с низким содержанием C3A или трёхкальциевого алюмината. Напомним содержание основных минералов в цементном клинкере основном компоненте цемента:
• Алит, трехкальциевый силикат – C3S. Основной минерал, оказывающий влияние на качество цемента. Алит обладает свойствами быстротвердеющего гидравлического вещества высокой прочности. Цементы высоких марок и быстротвердеющие цементы изготавливают с повышенным содержанием трехкальциевого силиката. Содержание в цементе – 37-60%.
• Белит, двухкальциевый силикат – C2S. Медленнотвердеющее гидравлическое вяжущее средней прочности. Цементы с повышенным содержанием белита медленно твердеют, однако прочность их нарастает в течение длительного времени. Содержание в цементе – 15-37%.
• Трехкальциевый алюминат – С3A. Минерал-плавень, главная задача которого понижение температуры спекания сырьевой смеси. Твердеет быстро, но имеет низкую прочность. Содержание в цементе – 5-15%.
• Четырехкальциевый алюмоферрит – С4AF. Минерал-плавень. Твердеет быстрее силикатов, но медленнее алюмината. Содержание в цементе – 10-18%.
Бетон, сульфатостойкий цемент
Бетон, сульфатостойкий цемент
Главная
Каталог
Бетон
Бетон, сульфатостойкий цемент
x
Класс бетона
всеB7,5B10B12,5B15B20B22,5B25B30B35B40B45
Морозостойкость
все-F50F75F100F150F200F300
Водонепроницаемость
все-W2W4W6W8W10W12W14W16
Заполнитель
всеГравий 3-20 ммЩебень гранитный 3-20 ммГравий 2-8 мм
Сбросить все фильтры
Класс бетона
всеB7,5B10B12,5B15B20B22,5B25B30B35B40B45
Морозостойкость
все-F50F75F100F150F200F300
Водонепроницаемость
все-W2W4W6W8W10W12W14W16
Заполнитель
всеГравий 3-20 ммЩебень гранитный 3-20 ммГравий 2-8 мм
Сбросить все фильтры
При оформлении заказа онлайн гарантируем ответ в течение часа.
Не нашли в каталоге – оформите спецзаказ
Цена и стоимость указаны с учетом НДС 20%
ВНИМАНИЕ! Цены по запросу в коммерческом отделе
Наименование | Морозо­стойкость | Водонепро­ницаемость | Заполнитель | Цена* | Количество, м3 | |
---|---|---|---|---|---|---|
В10 | F150 | W6 | Гравий 3-20 мм | 0 ₽ | ||
В7,5 | F150 | W4 | Гравий 3-20 мм | 0 ₽ | ||
В7,5 | F150 | W6 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В10 | F150 | W6 | Гравий 3-20 мм | 0 ₽ | ||
В10 | F150 | W6 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В15 | F100 | W10 | Гравий 3-20 мм | 0 ₽ | ||
В15 | F100 | W10 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В15 | F150 | W8 | Гравий 3-20 мм | 0 ₽ | ||
В15 | F150 | W8 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В15 | F150 | W12 | Гравий 3-20 мм | 0 ₽ | ||
В20 | F75 | W8 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В20 | F75 | W12 | Гравий 3-20 мм | 0 ₽ | ||
В20 | F75 | W12 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В20 | F150 | W6 | Гравий 3-20 мм | 0 ₽ | ||
В20 | F150 | W6 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В20 | F150 | W8 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В20 | F150 | W10 | Гравий 3-20 мм | 0 ₽ | ||
В20 | F150 | W10 | Щебень гранитный 3-20 мм | 0 ₽ | ||
В20 | F150 | W12 | Гравий 3-20 мм | 0 ₽ | ||
В20 | F150 | W12 | Щебень гранитный 3-20 мм | 0 ₽ |
* Цена указана без учета скидки.
Мы уточним стомость заказа после обработки заявки.
Внимание, стоимость доставки расчитывается отдельно
Перейти в корзину
Вам также может быть интересно:
Плиты дорожные (ПАГ,ПДН, 2П, 1П)
Сваи (С)
Перемычки (ПБ)
Тетраподы (Т)
Сульфатная атака — внешние и внутренние причины
Сульфатная атака — внешние и внутренние причины
Сульфатная атака – активное предотвращение
Существует 5 факторов, влияющих на сульфатную атаку:
- количество и природа присутствующего сульфата
- уровень грунтовых вод и его сезонные колебания
- поток грунтовых вод и пористость почвы
- форма конструкции и
- качество бетона
Исследование условий окружающей среды должно быть выполнено до строительства сооружения,
однако, если невозможно предотвратить попадание сульфатной воды на бетон, единственным
защита от нападения заключается в качестве бетона. Прочность бетона во многом
зависит от соотношения воды и цементных материалов (в/см). Если соотношение Вт/см уменьшается,
уменьшается пористость и бетон становится более непроницаемым. Проницаемость
бетон важен, потому что он контролирует количество миграции воды через бетон
или способность бетона сопротивляться проникновению агрессивных химических веществ. Нижний ш/см
соотношение также увеличивает прочность бетона на сжатие, что улучшает его сопротивление
к растрескиванию. Для защиты от сульфатной атаки Комитет ACI 201 рекомендует использовать
плотный, качественный бетон с низким соотношением в/см. Воздушное вовлечение предлагается, потому что оно
уменьшает соотношение в/см и, следовательно, проницаемость.
Между сульфатостойкостью бетона и его
содержание алюмината трикальция (C 3 A). Чем выше содержание C 3 A, тем
более склонен бетон к сульфатной атаке. Для повышения сульфатостойкости
бетон, нижний C 3 Доступны цементы. Цемент ASTM C 150 Type II (MSR) с
<8% C 3 A и цемент типа V (HSR) с <5% C 3 A обычно
указано в сульфатных средах. Частичная замена портландцемента на
пуццолан, такой как летучая зола с низким содержанием кальция, измельченный гранулированный доменный шлак или микрокремнезем
в равной степени снижают вероятность сульфатной атаки. Эти пуццоланы потребляют кальций в
поровой воды, уменьшить общую массу C 3 A и уменьшить проницаемость.
При принятии решения о том, какой пуццолан выбрать, важно учитывать содержание в нем СаО. А
высокий процент CaO в летучей золе может существенно ускорить проблему сульфатов. Для
Например, летучая зола ASTM класса F с содержанием CaO <10%, безусловно, улучшит стойкость к
бетон к сульфатной атаке. Точно так же микрокремнезем, метакаолин и природные пуццоланы
потребляют кальций для повышения устойчивости к сульфатам.
В следующей таблице из ACI 201 приведены рекомендации по типу цемента и вес/см
коэффициент для обычного бетона, который будет подвергаться воздействию сульфатов в почве, грунтовых водах,
или морской воды.
Рекомендации для обычного бетона, подверженного сульфатному воздействию
Воздействие | Водорастворимый сульфат (SO 4 ) в | Сульфат (SO 4 ) в воде, частей на миллион | Цемент | Водоцементное отношение, не более |
Мягкая | 0,00-0,10 | 0-150 | — | — |
Умеренный | 0,10-0,20 | 150-1500 | Тип II ИП(МС) ИС(МС) Тип II + пуццолан | 0,50 |
Тяжелая | 0,20 | 1500 | Тип V Тип II + пуццолан | 0,45 |
Более пристальный взгляд: типы цемента от I до V
Примечание редактора: Это вторая статья в годовой серии, посвященной обычному сырью, используемому в сборном железобетоне.
Кайла Хэнсон, ЧП
Свидетельства использования цементных материалов восходят к началу письменной истории. Египтяне использовали смесь цементных материалов в качестве раствора для закрепления каждого 2,5-тонного каменного блока Великой пирамиды более 4500 лет назад. Римляне использовали пуццолановую вяжущую смесь для строительства акведуков и других чудес инженерной мысли, включая Пантеон, крыша которого до сих пор является самым большим неармированным бетонным куполом в мире. Европейцы в средние века использовали гидравлический цемент для строительства каналов и крепостей, некоторые из которых стоят до сих пор.
Сегодня мы в основном используем портландцемент в нашем бетоне. Ингредиенты современных портландцементов тщательно отбираются, производятся, тестируются и регулируются по качеству и постоянству. Портландцемент доступен в многочисленных вариантах, каждый из которых состоит из точного количества различных материалов, предназначенных для конкретных применений в бетонировании.
Спецификации портландцемента
ASTM C150, «Стандартные технические условия на портландцемент», описывает 10 типов цемента, пять из которых обычно считаются основными типами цемента, используемыми на заводах по производству сборных железобетонных изделий:
Тип I – Нормальное/Общее назначение
Тип II – Средняя сульфатостойкость
Тип III – Высокая ранняя прочность
Тип IV – Низкая теплота гидратации
Тип V – Высокая сульфатостойкость
Тип I
Цемент Типа I считается универсальным цементом общего назначения и используется, когда особые свойства других типов цемента не требуются.
Тип II
Цемент типа II указывается в сценариях, где требуется, чтобы бетонное изделие проявляло повышенную устойчивость к сульфатам. Бетон, изготовленный из цемента типа II, может быть полезен для подземных сооружений в районах, где почва и грунтовые воды содержат умеренное количество сульфатов, а также для дорог, транспортных средств и т. д.
Тип III
Цемент типа III обеспечивает ускоренное развитие прочности в раннем возрасте. Поскольку более низкие температуры окружающей среды могут привести к замедлению гидратации цемента, цемент типа III часто используется при бетонировании в холодную погоду для ускорения набора прочности на ранних стадиях гидратации цемента. Цемент типа III также полезен, когда сборщики сборных железобетонных изделий отливают одну и ту же форму дважды за один день.
Тип IV
Цемент Типа IV выделяет меньше тепла во время гидратации и отверждения, чем обычный портландцемент Типа I. При массовых заливках или отливке больших объемов бетонных изделий часто используется цемент типа IV, чтобы уменьшить количество выделяемого тепла и снизить риск мгновенного схватывания или теплового удара. Способность цемента типа IV выделять меньше тепла во время гидратации также полезна при бетонировании в жаркую погоду, когда свежий бетон может затвердевать с ускоренной скоростью из-за высоких температур окружающей среды.
Тип V
Цемент типа V используется в бетонных изделиях, где необходима повышенная стойкость к сульфатам. Береговые конструкции, пирсы, подводные туннели, подводные конструкции, фундаменты, дороги и транспортные средства — все это обычные области применения цемента типа V.
Цементные элементы
Портландцемент сначала производится путем производства клинкера в массивной печи. Производство портландцементного клинкера в основном зависит от известняка, глины, песка, железной руды и гипса. Эти исходные материалы являются отличными поставщиками кальция, железа, кремнезема и глинозема среди других элементов. Преобладание этих элементов в портландцементе определяется долей каждого исходного материала, используемого при производстве клинкера. Количество каждого элемента, присутствующего в цементе, влияет на физические характеристики и поведение цемента.
Цементные фазы
Каждый тип портландцемента состоит из четырех преобладающих фаз или соединений: C 3 S, C 2 S, C 3 A и C 4 AF . 1 Каждая фаза играет уникальную роль в характеристиках цемента. Доля каждой фазы в портландцементном клинкере зависит от количества используемого исходного материала.
- C 3 S (трехкальциевый силикат) содержит от 50% до 70% портландцементного клинкера. С 3 S быстро увлажняется и затвердевает, в результате чего он в значительной степени отвечает за прирост прочности в раннем возрасте и начальное схватывание. По мере увеличения содержания C 3 S в портландцементе увеличивается и его способность способствовать развитию прочности бетона в раннем возрасте.
- C 2 S (двухкальциевый силикат) содержит от 10% до 25% портландцементного клинкера. C 2 S медленно гидратируется и затвердевает, в результате чего в первую очередь способствует набору прочности бетона в течение одной недели.
- C 3 A (трехкальциевый алюминат) содержит до 10% портландцементного клинкера. Хотя он лишь незначительно способствует развитию прочности в раннем возрасте, C 3 A является наиболее реакционноспособной из четырех основных фаз и легко выделяет тепло в течение первых нескольких дней гидратации. Цементы с более низким процентным содержанием C 3 A более устойчивы к почвам и воде, содержащей сульфаты.
- C 4 AF (тетракальциевый алюмоферрит) содержит до 15% портландцементного клинкера. Его вклад в развитие прочности бетона минимален. Типичный серый цвет портландцемента в значительной степени связан с C 9.0023 4 АФ. 2
На рис. 1 ниже показаны C 3 S и C 2 S при увеличении примерно в 400 раз.
Рисунок 1 Полированный шлиф портландцементного клинкера показывает C 3 S в виде светлых угловатых кристаллов. Более темные округлые кристаллы обозначаются как C 2 S. Увеличение примерно в 400 раз. 3
Влияние фазового состава
Химический состав каждого типа цемента, соответствующего стандарту ASTM C150, должен соответствовать требуемому пределу или находиться в пределах указанного диапазона, установленного в стандарте. Определенные требования к составу применяются ко всем типам цемента. Например, для каждого типа цемента, соответствующего стандарту ASTM C150, допускается максимальное содержание оксида магния 6%. Оксид магния вызывает небольшое расширение при гидратации цемента, поэтому количество этого материала должно быть ограничено.
Требования к составу для типов от II до V разработаны таким образом, чтобы цементы действовали в соответствии с их назначением.
См. Рисунок 2, чтобы соотнести относительную реакционную способность каждой фазы со следующими характеристиками цемента.
Рисунок 2 Относительная реакционная способность цементных смесей. Кривая с пометкой «В целом» имеет состав 55 % C 3 S, 18 % C 2 S, 10 % C 3 A и 8 % C 4 AF, средний состав цемента типа I ( Теннис и Дженнингс 2000). 3
Сульфатостойкость
Пониженный C 3 Содержание А в цементе соответствует повышенной сульфатостойкости. Таким образом, цемент типа II, предназначенный для умеренной сульфатостойкости, допускается с максимальным содержанием C 3 A 8%. Точно так же допускается содержание C 3 A в цементе типа V, предназначенном для обеспечения высокой сульфатостойкости, не более 5%.
Развитие прочности в раннем возрасте и повышенная теплота гидратации
C 3 A также вносит основной вклад в теплоту гидратации портландцемента. Цемент типа III, который указывается в сценариях, где желательна высокая начальная прочность или повышенная теплота гидратации, допускает относительно высокое содержание C 3 A до 15%.
Низкая теплота гидратации
И наоборот, цемент типа IV, который указывается, когда необходима низкая теплота гидратации, допускает максимальное содержание C 3 A 7%. Кроме того, для цемента типа IV требуется минимум C 2 S с содержанием 40%, потому что C 2 S медленно гидратируется и затвердевает и способствует увеличению прочности в течение одной недели. Это помогает обеспечить более медленное развитие силы и меньшее выделение тепла в раннем возрасте.
C 3 S быстро увлажняет и вносит значительный вклад в развитие силы в раннем возрасте и начальный набор. Таким образом, цементы Типа IV допускают максимальное содержание C 3 S 35%, что регулирует прирост прочности в раннем возрасте и тепловыделение.
Влияние физических характеристик
Размер частиц
Тонкость по Блейну – это мера тонкости частиц цемента, определяемая в соответствии со стандартом ASTM C204, «Стандартные методы определения крупности гидравлического цемента с помощью прибора для определения воздухопроницаемости».
Общая площадь поверхности частиц, заполняющих заданный объем, увеличивается по мере уменьшения размера частиц. Таким образом, частицы меньшего размера обеспечивают большую площадь контакта с водой для смешивания. Увеличенная площадь поверхности цемента и большая площадь контакта с водой затворения позволяет более мелким цементам легче вступать в реакцию с водой, что может ускорить гидратацию, набор прочности в раннем возрасте и время схватывания. Некоторые из основных типов цемента имеют требования к размеру частиц в форме пределов крупности по Блейну, чтобы помочь цементам работать в соответствии с их типом.
Например, цемент типа III будет иметь более высокую долю частиц меньшего размера, что поможет достичь большего набора прочности в раннем возрасте, в то время как цемент типа IV, вероятно, будет иметь большую долю частиц большего размера, чтобы помочь регулировать время схватывания и обеспечить более низкую теплота гидратации.
Прочность на сжатие
ASTM C150 также описывает минимальные результаты прочности на сжатие для паст, изготовленных с каждым из основных типов цемента. Важно отметить, что это минимальные значения, и они не отражают прочность бетона на сжатие в этом возрасте. На рис. 3 показано среднее время схватывания некоторых образцов портландцемента.
Рисунок 3 Среднее (среднее) время схватывания портландцемента по ASTM C191. Цифры в столбцах обозначают количество цемента, включенного в среднее значение (Tennis 2016). 3
Паста, изготовленная из цемента типа I, необходима для достижения минимальной прочности на сжатие 1740 фунтов на квадратный дюйм через 3 дня и 2760 фунтов на квадратный дюйм через 7 дней. Паста, изготовленная из цемента типа II, необходима для достижения прочности на сжатие 1450 фунтов на квадратный дюйм через 3 дня и 2470 фунтов на квадратный дюйм через 7 дней. Паста, изготовленная из цемента типа V, должна иметь минимальную прочность на сжатие 1160 фунтов на квадратный дюйм через 3 дня, 2180 фунтов на квадратный дюйм через 7 дней и 3050 фунтов на квадратный дюйм через 28 дней.
Поскольку цементы Типа II и Типа V имеют более низкое содержание C 3 A для достижения большей устойчивости к сульфатам, разумно ожидать несколько более низкие результаты прочности на сжатие в раннем возрасте. Паста, изготовленная из цемента типа III для использования, когда требуется более высокая прочность в раннем возрасте, должна иметь минимальную прочность на сжатие 1740 фунтов на квадратный дюйм через 1 день и 3480 фунтов на квадратный дюйм через 3 дня. Никаких дополнительных требований к прочности не указано, потому что ранний возраст обычно относится к первым нескольким дням гидратации.
Паста, изготовленная из цемента типа IV, необходима для достижения минимальной прочности на сжатие 1020 фунтов на квадратный дюйм через 7 дней и 2470 фунтов на квадратный дюйм через 28 дней. Низкое содержание C 3 S в цементе типа IV снижает теплоту гидратации за счет замедления скорости реакции цемента, что, в свою очередь, снижает прирост прочности в раннем возрасте. Таким образом, требования к прочности на сжатие для пасты, изготовленной из цемента типа IV, ниже, чем требования для других типов цемента.
Цемент для любого применения
К каждому типу цемента предъявляются различные химические и физические требования, которые обеспечивают предпочтительное поведение бетонной смеси для оптимизации ее практически для любого применения. Поскольку характеристики цемента постоянно изменяются, производители сборных железобетонных изделий могут добиться улучшенных характеристик бетона в более сложных условиях.
Рассмотрите возможность просмотра сертификатов цементного завода для получения информации о составе каждой партии. Поскольку для многих компонентов в типе цемента допускается определенный диапазон значений, может быть полезно использовать детали, указанные в сертификате завода, для прогнозирования характеристик свежего или затвердевшего бетона или для устранения незначительных несоответствий. Проконсультируйтесь с вашим поставщиком цемента, чтобы узнать больше о вашем цементе и о том, как он взаимодействует с другими материалами в вашей смеси для достижения наилучших результатов.
Кайла Хэнсон, ЧП, директор технических служб NPCA.
Ссылки :
1. Это сокращенные обозначения химических соединений. В соответствии с ASTM C150 при выражении фаз C = CaO, S = SiO 2 , A = Al 2 O 3 , F = Fe 2 O 3 .
2. PCA Design and Control of Concrete Mixtures, 15th Edition
3.